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Motivation

Over the past years, it has been several attempts for extending the
Malliavin calculus to a scenario driven by Lévy processes. (Bismut (1983),
Leandre (1985), Bichteler, Graveraux and Jacod (1987)).

We can point out two different lines to handle with this situation.

The papers associated with the addition of an extra jump, which
imply that the Malliavin “derivative” is a difference operator.

The papers associated with the use of a true derivative operator,
where we can use the chain rule.
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For the standard Poisson process,

(difference) Nualart and Vives (1990) proved that the difference
operator agrees with the annihilation one.

(derivative) The first attempt in this direction is the paper of Carlen
and Pardoux (1990)

Immediately it appeared the necessity of extend these methods for Lévy
processes with a more general Lévy measure.
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(difference) Picard, Ishikawa and Kunita, norwegian school of
probabilities, (S-U-V), Applebaum.

(derivative) Denis, Bouleau, Kulik, Vally, DiNunno, Decreusefont and
Savy.

Our aim in this work is to contribute on the second line, and so to have a
a chain rule in order to use the usual proof for getting an absolute
continuity criterium. Then apply it to different stochastic differential
equations driven by Lévy processes.
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Carlen-Pardoux approach to Malliavin derivative on the
Poisson space. The shift operator.

t1 t2 t3 tn T

1

2

n

tε1 tε2 tε3 tεn T

1

2

n

Tε

ω ω′

Tε : Ω −→ Ω ,P ◦ T −1
ε << P and N is still a P ◦ T −1

ε −Poisson process
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Malliavin derivative

The shift Tε is defined using a centered function g ∈ L2
0(0,T ).

D0
g = {F ∈ L2(Ω) : exists L2(Ω)− lim

ε↓0

1

ε

(
TεF − F

)
}.

For F ∈ D0
g ,

Dg F := L2(Ω)− lim
ε↓0

1

ε

(
TεF − F

)
.

There is a stochastic process

{DtF , 0 ≤ t ≤ T}

such that ∫ T

0
DtF g(t) dt = Dg F , ∀g ∈ L2

0(0,T ).
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Leon-Tudor result for the Poisson

The starting point of our paper is the following remark due to Tudor and
Leon about the Carlen–Pardoux derivative:
Let N be a Poisson process of parameter 1, and Ñt = Nt − t the
compensated Poisson process. Denote by T1 < · · · < Tn, . . . the jump
times of N. Let h ∈ C1

(
[0,T ]

)
. Then the random variable

Y =

∫ T

0
h(s) dÑs =

∑
Tn≤T

h(Tn)−
∫ T

0
h(s) ds

is in the domain of the Malliavin derivative in the Carlen-Pardoux sense
and the derivative satisfies the following equality:

DtY =

∫ T

0
h′(s)

( s

T
− 1(t,T ](s)

)
dNs .

In the next subsection, we extend formally this property to define a
Malliavin derivative for a Lévy process.
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Extension to Lévy process

Let X be a Lévy process with Lévy-Itô representation:

Xt =γt + σWt +

∫ ∫
(0,t]×{|x |>1}

xdN(s, x)+

lim
ε→0

∫ ∫
(0,t]×{ε<|x |≤1})

xdÑ(s, x),

where W is a standard Brownian motion, N is the jump measure of the
process and dÑ(t, x) = dN(t, x)− dtν(dx). Moreover W and N are
independent. The limit is a.s., uniform in t in any bounded interval.
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Itô (1956) proved that X determines a a centered independently scattered
random measure M on [0,∞)× R.
For E ∈ B([0,∞)× R) such that µ(E ) <∞,

M(E ) = σ

∫
E(0)

dWt + lim
n→∞

∫ ∫
{(t,x)∈E ′: 1

n
≤|x |≤n}

xdÑ(t, x).

For A,B ∈ B([0,∞)× R), with µ(A) <∞ and µ(B) <∞, we have

E[M(A)M(B)] = µ(A ∩ B),

where
µ(dt, dx) = λ(dt)δ0(dx) + λ(dt)x2ν(dx),

and λ is the Lebesgue measure in R.
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For a function h ∈ L2([0,T ]× R, µ), we can construct the integral (in the
L2(Ω) sense)

M(h) :=

∫
[0,T ]×R

h(t, x) dM(t, x),

which is the multiple integral of order 1 defined by Itô. This integral is
centered, and for g , h ∈ L2([0,T ]× R, µ),

E [M(h)M(g)] =

∫
[0,T ]×R

h g dµ.

We can write this integral as

M(h) = σ

∫ T

0
h(t, 0)dWt +

∫
[0,T ]×R0

h(t, x)x dÑ(t, x).
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The local Malliavin derivative

S denotes the family of all functionals of the form

f (M(h1), . . . ,M(hn)),

where

f in C∞b (Rn) (f and all its partial derivatives are bounded),

h1, . . . , hn ∈ L2([0,T ]× R, µ) and for all x 6= 0, hi (·, x) ∈ C 1([0,T ]),
i ∈ {1, . . . , n}, and ∂hi ∈ L2([0,T ]× R, µ) where ∂ means the partial
derivative with respect to time.

The set S is called the family of smooth random variables, and it is dense
in L2(Ω).

We will also consider the family K of all bounded functions
k : [0,T ]× R0 → R such that they and their partial derivative with
respect time are in L2([0,T ]× R0, λ× ν) ∩ L1([0,T ]× R0, λ× ν).
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The derivative operator

Definition

Given k ∈ K, F ∈ S, (F = f (M(h1), . . . ,M(hn))) and Λ ∈ B(R), we define

DΛ,k
t F =

n∑
i=1

(∂i f )(M(h1), . . . ,M(hn))DΛ,k
t M(hi ), t ∈ [0,T ],

with

DΛ,k
t M(h) = 11Λ(0)σh(t, 0)

+

∫ T

0

∫
Λ∩R0

k(s, y)∂sh(s, y)y(
s

T
− 11[t,T ](s))dN(s, y).

We call DΛ,k
t F the local Malliavin derivative of F .
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Remarks

We have the following properties for the derivative operators:

The integral in the right-hand side of the definition of the derivative,
which is an integral with respect to the no compensated Poisson
measure, is well-defined due to the function k ∈ K.

DΛ,k
t M(h) = 11Λ(0)σh(t, 0)

+

∫ T

0

∫
Λ∩R0

k(s, y)∂sh(s, y)y(
s

T
− 11[t,T ](s))dN(s, y).

Also we will see that this family K allow to consider applications to
stochastic differential equations. The function k(t, x) is an essential
ingredient of the derivative, and it may change from one application
to another. To short the notation, in general we will omit that k in
the expression DΛ,k

t F .
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Observe that if Λ = {0}, then DΛ,k is the Malliavin’s derivative with
respect to the Brownian part of the Lévy process X ,

If Λ = {x} for some x 6= 0 with ν({x}) 6= 0, we obtain

D
{x}
t M(h) = x

∫ T

0
k(s, x)∂sh(s, x)(

s

T
− 11[t,T ](s))dNx

s ,

where Nx
s is the Poisson process on [0,T ] that counts the number of

jumps of height x .

Moreover, if the Lévy process is the standard Poisson process,
(x = 1), and we take k(t, x) independent of the time parameter, we
obtain

D
{1},k
t M(h) = k(1)

∫ T

0
∂sh(s, 1)(

s

T
− 11[t,T ](s))dN1

s .
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Let F ∈ S such that F = 0, a.s. Then DΛF = 0, λ⊗ P − a.e.
That means that the operator DΛ,k is well-defined.

In the previous remarks we have used the following Fubini type theorem,
whose proof is straightforward:

Theorem

Let f ∈ L2([0,T ]2 × R, λ⊗ µ). Then all the following integrals are well
defined and ∫ T

0
M(f (t, ·)) dt = M(

∫ T

0
f (t, ·) dt), a.s.
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Next proposition gives a Malliavin integration by parts formula:

Theorem

Let F ∈ S, and g be a measurable and bounded function on [0,T ]. Then

E

(∫ T

0
(DΛ,k

t F )g(t)dt

)
= E

[
F 11Λ(0)

∫ T

0
σg(s)dWs

]
+ E

[
F

∫ T

0

∫
Λ∩R0

(
g(s)− 1

T

∫ T

0
g(t)dt

)
k(s, y)dN(s, y)

]
− E

[
F

(∫ T

0

∫
Λ∩R0

∂sk(s, y)

[∫ T

0
g(t)(

s

T
− 11[0,s](t))dt

]
dN(s, y)

)]
.

We proof first this formula when ν(Λ) <∞, and take the limit.
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The following rules of derivation are well known in Brownian Malliavin
calculus; they can be translated to our context with the same proof.

Theorem

(Chain rule). Let f : Rn → R be a continuously differentiable function
with bounded partial derivatives, and let F = (F1, . . . ,Fn) a random vector
such that Fj ∈ Dom DΛ, for j = 1, . . . , n. Then f (F ) ∈ Dom DΛ and

DΛ
(
f (F )

)
=

n∑
j=1

∂j f (F )DΛFj .

2. Let F ,G ∈ Dom DΛ such that G DΛF ,F DΛG ∈ L2([0,T ]× Ω). Then
F G ∈ Dom DΛ and

DΛ(F G ) = G DΛF + F DΛG .
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Applying the integration by parts formula and proceeding as in the book of
Nualart, we show the following result, taking in account that the bounded
functions are dense in L2([0,T ]).

Corollary

The operator DΛ,k is an unbounded densely defined and closable operator
from L2(Ω) into L2([0,T ]× Ω).

In particular, we have that the operator DΛ has a closed extension, which
is also written by DΛ. The domain of this operator is denoted by Dom DΛ.
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Absolute continuity criterium

The chain rule allows to prove a criterion for the absolutely continuity of a
functional F in a similar way that in the Brownian case.

Theorem

Let Λ ∈ B(R), k ∈ K and F ∈ Dom DΛ such that∫ T

0
(DΛ

t F )2dt > 0

a.s. on a measurable set A ∈ F . Then, P ◦ F−1 is absolutely continuous
on A (i.e., λ(B) = 0 implies that P({F ∈ B} ∩ A) = 0).

It is worth to remark that the criterion is true for every set Λ and weight
function k ∈ K. This is very interesting for applications because we can
choose an appropriate Λ and k depending of F .
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Derivatives of iterated integrals.

We want to study the derivatives of iterated integrals over sets with finite
Lévy measure. Such integrals can be computed pathwise, and its
properties can be proved by combinatorial methods.
Let Θ ∈ B(R) be a bounded set such that 0 6∈ Θ (closure of Θ); then
ν(Θ) <∞. Write the Poisson random measure

NΘ(B) = #{t : (t,∆Xt) ∈ B and ∆Xt ∈ Θ}, B ∈ B
(
(0,∞)× R0

)
.

that has intensity λ⊗ νΘ, where νΘ(C ) = ν(Θ ∩ C ), for C ∈ B(R).

Define
NΘ

t = NΘ
(
[0, t]×Θ

)
<∞, a.s., t ∈ [0,T ]

Note that we can order the jumps in the interval [0,T ], T1 < · · · < TNΘ
T

,
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Multiple integrals can be considered: Denote by Sn(Θ) the simplex{
(tn, x1; . . . ; tn, xn) ∈ ([0,T ]× R0)n : t1 < · · · < tn

}
.

For φ : Sn(Θ)→ R, define

JΘ
n (φ) =

∫
· · ·
∫

Sn(Θ)
φ(t1, x1; . . . ; tn, xn) dNΘ(t1, x1) · · · dNΘ(tn, xn)

=
∑

1≤i1<···<in≤NΘ
T

φ(Ti1 ,∆XTi1
; . . . ; Tin ,∆XTin

).

with the convention that the sum is zero if NΘ
T < n.

Theorem

For every p ≥ 1, if φ ∈ Lp
(
Sn(Θ), (λ⊗ νΘ)n

)
, then JΘ

n (φ) ∈ Lp(Ω), and

E
[∣∣JΘ

n (φ)
∣∣p] ≤ Cp,n

∫
Sn(Θ)

|φ(t1, x1; . . . ; tn, xn)|p dt1, · · · dtndν(x1) · · · dν(xn),

where the constant Cn,p depends only on n and p.
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The product formula (see Lee and Shih and Tudor), for this particular
case, is simpler and the proof straightforward:

Theorem

Consider φn : Sn(Θ)→ R and φ1 : [0,T ]× R0 → R. Then,

JΘ
n (φn) JΘ

1 (φ1) = JΘ
n+1(φn⊗̃φ1) + JΘ

n (φn ∗ φ1),

where

φn⊗̃φ1(t1, x1; . . . ; tn+1, xn+1) =
n+1∑
j=1

φn(t1, x1; . . . ; t̃j , xj ; . . . ; tn+1, xn+1)

φ1(tj , xj),

and t̃j , xj means that this pair is missing, and

φn ∗ φ1(t1, x1; . . . ; tn, xn) =
n∑

j=1

φn(t1, x1; . . . ; tn, xn)φ1(tj , xj).
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Lemma

Let Θ ∈ B(R) be a bounded set such that 0 6∈ Θ, and Λ ∈ B(R) with
Θ ⊂ Λ. Consider f ∈ C∞b (R). Then f (NΘ

T ) ∈ Dom DΛ and

DΛf (NΘ
T ) = 0.

Theorem

Let Θ and Λ as before, and φ ∈ L2
(
Sn(Θ), (λ⊗ ν)n

)
such that for every

(x1, . . . , xn) ∈ Θn, φ(·, x1; . . . ; ·, xn) ∈ C∞
(
Sn

)
, where

Sn = {0 ≤ t1 ≤ · · · ≤ tn ≤ T}. Then JΘ
n (φ) ∈ Dom DΛ and

DΛ
t JΘ

n (φ) =
n∑

j=1

JΘ
n

(
k(sj , xj)∂sjφ(s1, x1; . . . ; sn, xn)

( sj

T
− 11(t,T ](sj)

))
.
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Corollary

With the previous notations,

φ(T1,∆XT1 ; . . . ,Tn,∆XTn)11{NΘ
T≥n} ∈ Dom DΛ

and, over {NΘ
T ≥ n},

DΛ
t φ(T1,∆XT1 ; . . . ; Tn,∆XTn)

=
n∑

j=1

k(Tj ,∆XTj
)∂jφ(T1,∆XT1 ; . . . ,Tn,∆XTn)

(Tj

T
− 11[0,Tj ](t)

)
.

Note that this result yields that D{1}, with k = 1, agrees with the operator
introduced in Carlen and Pardoux for the Poisson process. Also, in general,
with the previous notations, the jump time Tj is in the domain of DΛ and

DΛ
t Tj = k(Tj ,∆XTj

)

(
Tj

T
− 11[0,Tj ](t)

)
.
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Absolutely continuity for stochastic differential equations

In this section we utilize our previous results to find conditions that
guarantee that the solution at time T of some stochastic differential
equations driven by a Lévy process has density. The key point is that we
can choose the convenient set Λ and weight k(t, x) for each type of
equation.

We will study the following classes of SDE,

An equation driven by a Lévy process with continuous part.

A pure discontinuous equation with a monotone drift.
I Case with finite Lévy measure.
I Case with infinite Lévy measure.

A pure discontinuous equation with no zero Wronskian.
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An equation driven by a Lévy process with continuous part

We here consider the solution of the stochastic differential equation with
an additive jump noise and a Wiener stochastic integral of the form

Zt = x0 +

∫ t

0
b(Zs)ds +

∫ t

0
σ(Zs)dWs +

∫ t

0

∫
R0

l(y)ydN(s, y), t ∈ [0,T ],

where l ∈ K and the coefficients b, σ are differentiable on R with bounded
derivatives.
Then, choosing Λ = {0} and k ∈ K, and proceeding as in the book of
Nualart, we can see that

D
{0},k
t ZT = σ(Zt) exp

(∫ t

0
σ
′
(Zs)dWs +

∫ t

0

{
b
′
(Zs)− 1

2
(σ
′
(Zs))2

}
ds

)
, t ∈ [0,T ].

Thus we can state the following Theorem, where we give a set in which
the integral of the square of the last derivative is positive.
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Theorem

The random variable ZT is absolutely continuous with respect to the
Lebesgue measure on the set {S < T}, where

S = inf

{
t ∈ [0,T ] :

∫ t

0
11{σ(Zs)6=0}ds > 0

}
∧ T .

Remark We can see that last theorem also holds in the case that the
coefficients are only Lipschitz functions with linear growth.
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A pure discontinuous equation with a monotone drift.

In this section we consider the following equation with an additive jump
noise

Zt = x +

∫ t

0
f (Zs)ds +

∫ t

0

∫
R0

h(y)dN(s, y), t ∈ [0,T ].

where x ∈ R, f : R→ R is a function with a bounded derivative and
h ∈ L2(R0, ν) ∩ L1(R0, ν). It is well-known that this equation has a unique
square-integrable solution.

In order to calculate DR0,kZT , with k ∈ K, we first consider the equation
restricted to jumps of the driven process with jumps size in

Θm = {x ∈ R : 1/m < |x | < m},
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Theorem

Let Θm = {x ∈ R : 1/m < |x | < m}, and

Z
(m)
t = x +

∫ t

0
f (Z

(m)
s )ds +

∫
[0,t]×Θm

h(y)dN(s, y), t ∈ [0,T ].

Then, as m→∞, Z
(m)
t converges to Zt in L2(Ω), for every t ∈ [0,T ].

That convergence is also a.s. for every t ∈ [0,T ] a.e.

Now we consider the flow {Φt(s, x) : 0 ≤ s ≤ t ≤ T and x ∈ R}
associated with the equation . That is Φt(s, x) is the unique solution to
the equation

Φt(s, x) = x +

∫ t

s
f (Φu(s, x))du, t ∈ [s,T ].
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Denote by X = {Xt , t ≥ 0} the Lévy process associated to the Poisson
measure N (obviously with γ = σ = 0).
The processes X and Z jump at the same times, and the jumps height of
the solution process Z in a jump time τ is h(∆Xτ ).
Denote by T1 < T2 < .. the jump times of NΘm (the dependence of Tj on
m is suppressed to short the notations). The solution of the approximative
equation in {NΘm

T = n} is given by

Z
(m)
t = Φt(0, x), t ∈ [0,T1),

Z
(m)
T1

= ΦT1(0, x) + h(∆XT1),

Z
(m)
t = Φt(T1,Z

(m)
T1

), t ∈ [T1,T2),

and so on.
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x

T1 T2

h(∆XT1)

t

Figure: A trajectory of Z
(m)
t .
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Using induction in n, we have

DR0,k
t

(
Z Λm

T 11
[NΛm

T =n]

)
= 11

[NΛm
T =n]

∫ T

0

∫
Λm

exp

(∫ T

s
f ′(Z Λm

u )du

)(
f (Z Λm

s− )− f (Z Λm
s )
)

k(s, y)
( s

T
− 11[0,s](t)

)
dN(s, y).

Taking the limit when m goes to ∞ and, from the dominated convergence
theorem, we obtain:

Theorem

DR0,k
t ZT =

∫ T

0

∫
R0

exp

(∫ T

s
f ′(Zu)du

)
(f (Zs−)− f (Zs))

k(s, y)
( s

T
− 11[0,s](t)

)
dN(s, y).
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Case with finite Lévy measure.

In this section we analyze that the existence of a density for ZT in the case
that the Lévy measure is finite and the drift is a monotone function.

Theorem

Assume that ν(R0) <∞, h(y) 6= 0 for y ∈ R0 and that f is a monotone

function. Then ZT is absolutely continuous on the set
[
NR0

T ≥ 1
]
.

Proof: We first assume that f is an increasing function. We choose for k
the function (−h ∧ 1) ∨ (−1) that depends only on y . The function k(y)

is bounded and k(y) has the opposite sign than h(y). Then,

(f (Zs−)− f (Zs− + h(∆Xs)))k(s,∆Xs) is strictly positive in the jump
points.
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∫ T

0

(
DR0,k

t ZT

)2
dt =

=
∑N

R0
T

i=1 exp
(

2
∫ T

T
R0
i

f ′(Zu)du
)(

f (Z
T

R0
i −

)− f (Z
T

R0
i

)
)2

×(k(∆X
T

R0
i

))2T R0
i

(
1− T

R0
i
T

)
+2
∑

1≤i<j≤N
R0
T

exp
(∫ T

T
R0
i

f ′(Zu)du
)(

f (Z
T

R0
i −

)− f (Z
T

R0
i

)
)

k(∆X
T

R0
i

)

× exp

(∫ T

T
R0
j

f ′(Zu)du

)(
f (Z

T
R0
j −

)− f (Z
T

R0
j

)

)
k(∆X

T
R0
j

)T R0
i

(
1− T

R0
j

T

)
,

which is bigger that zero on the set
[
NR0

T ≥ 1
]
. Therefore ZT absolutely

continuous in this set.
Finally we can proceed similarly in the case that f is decreasing using the
function (h ∧ 1) ∨ (−1) instead of k. �
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Case with infinite Lévy measure

Now we deal with the case that f is only monotone on an neighborhood of
the initial condition x . This problem has been analyzed by Nourdin and
Simon using an stratification method.

Remember the equation that we are considering:

Zt = x +

∫ t

0
f (Zs)ds +

∫ t

0

∫
R0

h(y)dN(s, y), t ∈ [0,T ].

Here x ∈ R, f : R→ R is a function with a bounded derivative and
h ∈ L2(R0, ν) ∩ L1(R0, ν).

Theorem

Assume that ν(R0) =∞, h(y) 6= 0 for y ∈ R0 and that f is a monotone
function on a neighborhood of the point x. Then, the random variable ZT

is absolutely continuous.
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Proof: We assume that there is ε > 0 such that f is increasing on
(x − ε, x + ε) because the proof for f decreasing is similar to this one.
The fact that f has a bounded derivative and the Grondwall lemma imply
that there exists M > 0 and t0 ∈ (0,T ) such that

|Zt − x | ≤ ε

2
+ eMT

∫ t

0

∫
R0

|h(y)|dN(s, y), t ∈ [0, t0].

Now, for t ∈ [0, t0], let

At =

{
eMT

∫ t

0

∫
R0

|h(y)|dN(s, y) >
ε

2

}
.
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Let kt : [0,T ]→ R be a function in C 1((0,T )) such that kt(s) > 0 for
s ∈ [0, t), and kt(s) = 0 for s ≥ t.

Define ((h(y) ∧ 1) ∨ (−1)). It is is bounded and the image has the same
sign than h(y).

Define k(t)(s, y) = −kt(s)((h(y) ∧ 1) ∨ (−1)). If s < t, this function has
opposite sign than h(y).

As |Zs − x | ≤ ε for s ≤ t ≤ t0 on the set Ac
t , then, in this set,

(f (Zs−)− f (Zs))k(t)(s, y) > 0 if Z has a jump at time s ∈ (0, t) (f is
increasing). But, as the Lévy measure is infinite, we have, with probability
1, jumps in any neighborhood of the origin. So

∫ T

0

(
DR0,k(t)

u ZT

)2
du > 0. on Ac

t ,
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As a consequence, by the criterium of absolute continuity, the condition
λ(B) = 0 implies that

P([ZT ∈ B] ∩ Ac
t ) = 0.

Finally, we observe that Ac
t ⊂ Ac

t′ for t ′ < t and that P(∪t<t0Ac
t ) = 1,

which follows from the Markov inequality

P(At) ≤ 4e2MT

ε2
E

((∫ t

0

∫
R0

|h(y)|dN(s, y)

)2
)

≤ 8e2MT

ε2
t

(∫
R0

|h(y)|2ν(dy) + T

(∫
R0

|h(y)|ν(dy)

)2
)
.

Now we can conclude using that P([ZT ∈ B]) = limt↓0 P([ZT ∈ B] ∩ Ac
t ),

so ZT is absolutely continuous. �
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A pure discontinuous equation with no zero Wronskian

In this section we assume that the Lévy measure ν is finite and consider
the stochastic differential equation

Zt = x +

∫ t

0
f (Zs)ds +

∫ t

0

∫
R0

h(y)g(Zs−)dN(s, y), t ∈ [0,T ].

where x ∈ R, h 6= 0 is a bounded function in L2(R0, ν), and f : R→ R
and g : R→ R are two bounded functions with two bounded derivatives
and one bounded derivative, respectively. The existence of a density for
ZT was analyzed by Carlen and Pardoux in the case that the involved Lévy
process is a Poisson process. In the remaining of this section we also
assume that

|h(y)W (g , f )(x)| > 1

2
||f ′′||∞||h||2∞||g ||2∞, x ∈ R and y ∈ R0, (1)

where W (g , f ) = g ′f − f ′g is the Wronskian of g and f .
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We consider the flow {Φt(s, x) : 0 ≤ s ≤ t ≤ T and x ∈ R} associated
with the equation and the family of stopping times {Tj : j ∈ N} of the
Lévy process X . Remember that now we are dealing with a finite Lévy
measure in this part of the paper.
Note that the fact that ZTn = ΦTn(Tn−1,ZTn−1) + h(∆XTn)g(ZTn) allows
to utilize induction on n to get

DR0,k
t ZT =

∫ T

0

∫
R0

exp

(∫ T

s
f ′(Zu)du

)
rt(s, y)dN(s, y)

+
∞∑

m=2

∫
Sm(T )

exp

(∫ T

s1

f ′(Zu)du

)
h(ym)g ′(Zsm−) · · · h(y2)g ′(Zs2−)

× rt(s1, y1)dN(s1, y1) · · · dN(sm, ym)

where

rt(s, y) = k(s, y)
( s

T
− 11[0,s](t)

) (
f (Zs−)− f (Zs) + f (Zs−)h(y)g ′(Zs−)

)
and

Sm(r) = {(s1, y1; . . . ; sm, ym) ∈ ([0,T ]× R0)m : 0 ≤ s1 < · · · < sm ≤ r}.
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Theorem

Let Z be the solution of equation and k ∈ K. Then ZT is in the domain of
DR0,k and has a density on the set [NR0

T > 0].

Proof: We first observe that DR0,1ZT is a process different than 0 on
[NT = 1].

Now for a rational number p ∈ (0,T ) and a positive integer n ≥ 2, we
introduce the set Ap,n = [NT = n] ∩ [Tn−1 ≤ p < Tn] and choose a
function hp : [0,T ]→ R+ of class C 1 such that hp(s) = 0 for s ≤ p, and
hp(s) > 0 for s > p.
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Then in the set Ap,n we only have to consider in the derivative the jump at
Tn,

D
R0,hp
t ZT = exp

(∫ T

Tn

f ′(Zu)du

)
hp(Tn)

(
Tn

T
− 11[0,Tn](t)

)
×
(
f (ZTn−)− f (ZTn) + f (ZTn−)h(∆XTn)g ′(ZTn−)

)
,

which is different than zero.
Hence by the criterium of absolute continuity P([ZT ∈ B] ∩ Ap,n) = 0 for
any Borel set B ⊂ R such that λ(B) = 0.
Thus, for this Borel set we have

P([ZT ∈ B] ∩ [NT > 0]) = P([ZT ∈ B] ∩ ∪n∈N,p∈QAp,n) = 0,

and the proof is finished.
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