Statistical estimation of the intermittency coefficient of a random cascade

Laurent DUVERNET (Université Paris 7)

Fractals and Related Fields II Porquerolles June 13-17, 2011

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Estimation procedures and convergence rates

The setting

Estimation procedures and convergence rates

Statistical inference for multifractal processes

• Let $X = (X(t), t \ge 0)$ a real-valued random process s.t.

 $\mathbb{E}[|X(t+s)-X(t)|^{p}] \approx s^{\zeta(p)}$ as $s \to 0$.

► Hölder inequality: p → ζ(p) is a concave function. We say that X is monofractal if ζ is linear, and X is multifractal if ζ is strictly concave.

 \rightarrow multifractal formalism, Hölder regularity of the sample paths of *X*.

- Suppose that we have some data X₀, X_{1/n}, ..., X₁. Can we recognize if X is mono- or multifractal? and how accurately can we reconstruct ζ as the number of data n grows ?
- → Applications to real data: turbulence, finance...

Scaling exponent on financial data

Scaling exponent of CAC40

р

< □ > < 同 > < 回 >

э

э

Pointwise estimation vs. cumulant estimation

Estimating $\zeta(p)$ for all p in some real interval:

- First possibility: find consistent estimates of ζ(p₁),...,ζ(p_{un}) with u_n → +∞ as the number of data n grows.
- Second possibility: estimate ζ(0), ζ'(0), ζ''(0), ...
 Intermittency coefficient: ζ''(0) which indicates whether ζ is linear or not.
- ► Here I consider processes of random cascades that satisfy a scaling property: for some interval *I* and all *r* ∈ (0, 1)

$$(X(rt), t \in I) \stackrel{d}{=} r W_r(X(t), t \in I)$$

with W_r a positive r.v. indep. of X. Then $\zeta^{(k)}(0)$ can be recovered from $\mathbb{E}[\log^k W_r]$.

Mandelbrot cascades [Mandelbrot 1974, Kahane and Peyrière 1976]

A Mandelbrot cascade is a continuous, nonnegative and increasing process $(X(t), t \in [0, T])$. Let W a positive r.v. with $\mathbb{E}[W] = 1$, and

$$(W_i, i \in \{0, 1\}^k, k \in \mathbb{N})$$

i.i.d. copies of W. X(t) is defined as the limit of the sequence

$$X_{1}(t) = \int_{0}^{t} (W_{0} \mathbf{1}_{u \in [0, 1/2]} + W_{1} \mathbf{1}_{u \in [1/2, 1]}) du$$

$$X_{2}(t) = \int_{0}^{t} (W_{0} W_{00} \mathbf{1}_{u \in [0, 1/4]} + W_{0} W_{01} \mathbf{1}_{u \in [1/4, 1/2]} + W_{1} W_{10} \mathbf{1}_{u \in [1/2/3/4]} + W_{1} W_{11} \mathbf{1}_{u \in [3/4, 1]}) du$$

$$X_{3}(t) = \dots$$

Log-normal cascades

- More elaborate framework: grid free constructions of random cascades: Kahane (1985), Barral and Mandelbrot (2002), Bacry and Muzy (2003)...
- ► Popular setting: **"log-normal" cascades**: log *W* is a Gaussian random variable with variance λ^2 .
- They are multifracal processes with scaling exponent

$$\zeta(p) = p - \frac{\lambda^2 p(p-1)}{2}.$$

• Hence estimating the **function** ζ is the same as simply estimating the **scalar** λ^2 – the *intermittency coefficient*.

Estimation procedures and convergence rates

Estimation based on the empirical moments

Idea: approximate the true theoretical moments by empirical moments.

Let

$$S_n(p) = \frac{1}{n} \sum_{k=0}^{n-1} |X((k+1)/n) - X(k/n)|^p.$$

Then from the multifractal property

$$S_n(p) \approx \mathbb{E}[|X((k+1)/n) - X(k/n)|^p] = n^{-1+\lambda^2 p(p-1)/2}.$$

Hence define

$$\widetilde{\lambda}_n^{2,p} = \frac{2}{p(p-1)} \Big(1 + \frac{\log S_n(p)}{\log n} \Big)$$

or

$$\hat{\lambda}_n^{2,p} = \frac{2}{p(p-1)} \Big(1 + \frac{\log S_{2n}(p) - \log S_n(p)}{\log 2} \Big).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Convergence rate

Theorem 1 (Ossiander and Waymire 2000, D. 2011, Ludeña and Soulier 2011)

Let X a log-normal Mandelbrot cascade, or a log-normal multifracal random measure (Bacry and Muzy 2003). Then for some $p^* > 1$ and all $p \in (0, p^*)$, $p \neq 1$,

$$|\hat{\lambda}_n^{2,p} - \lambda^2| \asymp n^{-1/2 + \lambda^2 p^2/2}$$

Slower rate of convergence than the usual parametric rate $1/\sqrt{n}$.

Are there estimation procedures that converge faster ?

Logarithms of increments

Abry, Jaffard, Roux and Wendt (2007); Bacry, Kozhemyak and Muzy (2008) \rightarrow estimates based on the properties of the **log** of the increments (or wavelet coef., or wavelete leaders.)

From the scaling property:

$$(X(t/n), t \in I) \stackrel{d}{=} 1/n \, W_{1/n} \left(X(t), t \in I \right)$$

with log $W_{1/n}$ a **Gaussian r.v.** with variance $\lambda^2 \log n$. • Let $x_{n,k} = \log |X((k+1)/n) - X(k/n)|$, then

$$x_{n,k} \stackrel{a}{=} -\log(n) + w_{n,k} + m_{n,k}, 0 \le k \le n-1,$$

with $(w_{n,k})_k$ a **Gaussian sequence** with covariance $\mathbb{C}ov[w_{n,k}, w_{n,k'}] \approx c + \lambda^2 \log(n/(|k - k'| + 1))$, while $(m_{n,k})$ can be considered as a "noise".

Using the moments of the log of the increments for estimating λ^2

From the previous decomposition, we hope to recover λ^2 from the second order properties of $w_{n,k}$.

Abry et al. 2007: estimator based on the empirical variance of the x_{n,k}'s.

 \rightarrow I find a rate of convergence $\frac{\log n}{\sqrt{n}}$.

Bacry et al. 2008: estimator based on the empirical covariance of the x_{N,k}'s.

 \rightarrow rate of convergence $\frac{\sqrt{\log n}}{\sqrt{n}}$.

► D., 2011: estimator based on the **empirical variance** of $x_{N,k+1} - x_{N,k}$. → rate of convergence $\frac{1}{\sqrt{n}}$.

Figure: Empirical distribution of the estimators for 100 simulations of a log-normal MRM; $\lambda^2 = 0.1$; N = 32768.

Conclusion

- How accurately can we characterize the multifractality of some data when the number of data grows?
- In the "simple" case of log-normal random cascades, multifractality is characterized by a single real number, the intermittency coefficient.
- We find different convergence rates for different estimation procedures of this coefficient.
- In particular, the "usual" approach based on the empirical moments of the increments of the process is sub-optimal.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>