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Statistical inference for multifractal processes

I Let X =
(
X (t), t ≥ 0

)
a real-valued random process s.t.

E
[
|X (t + s)− X (t)|p

]
≈ sζ(p) as s → 0.

I Hölder inequality: p 7→ ζ(p) is a concave function. We
say that X is monofractal if ζ is linear, and X is
multifractal if ζ is strictly concave.
→ multifractal formalism, Hölder regularity of the sample
paths of X .

I Suppose that we have some data X0, X1/n, . . . , X1.
Can we recognize if X is mono- or multifractal? and how
accurately can we reconstruct ζ as the number of data n
grows ?

→ Applications to real data: turbulence, finance...



Scaling exponent on financial data
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Pointwise estimation vs. cumulant estimation

Estimating ζ(p) for all p in some real interval:
I First possibility: find consistent estimates of
ζ(p1), . . . , ζ(pun) with un → +∞ as the number of data n
grows.

I Second possibility: estimate ζ(0), ζ ′(0), ζ ′′(0), . . .
Intermittency coefficient: ζ ′′(0) which indicates whether ζ
is linear or not.

I Here I consider processes of random cascades that satisfy
a scaling property: for some interval I and all r ∈ (0,1)(

X (rt), t ∈ I
) d
= rWr

(
X (t), t ∈ I

)
with Wr a positive r.v. indep. of X . Then ζ(k)(0) can be
recovered from E

[
logk Wr

]
.



Mandelbrot cascades [Mandelbrot 1974, Kahane and
Peyrière 1976]

A Mandelbrot cascade is a continuous, nonnegative and
increasing process

(
X (t), t ∈ [0,T ]

)
. Let W a positive r.v.

with E
[
W
]
= 1, and

(Wi , i ∈ {0,1}k , k ∈ N)

i.i.d. copies of W . X (t) is defined as the limit of the sequence

X1(t) =
∫ t

0

(
W01u∈[0,1/2] + W11u∈[1/2,1]

)
du

X2(t) =
∫ t

0

(
W0W001u∈[0,1/4] + W0W011u∈[1/4,1/2]

+ W1W101u∈[1/2/3/4] + W1W111u∈[3/4,1]
)
du

X3(t) = . . .



Log-normal cascades

I More elaborate framework: grid free constructions of
random cascades: Kahane (1985), Barral and Mandelbrot
(2002), Bacry and Muzy (2003)...

I Popular setting: "log-normal" cascades: log W is a
Gaussian random variable with variance λ2.

I They are multifracal processes with scaling exponent

ζ(p) = p − λ2p(p − 1)/2.

I Hence estimating the function ζ is the same as simply
estimating the scalar λ2 – the intermittency coefficient.
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Estimation based on the empirical moments
Idea: approximate the true theoretical moments by empirical
moments.

I Let

Sn(p) =
1
n

n−1∑
k=0

|X ((k + 1)/n)− X (k/n)|p.

Then from the multifractal property

Sn(p) ≈ E
[
|X ((k + 1)/n)− X (k/n)|p

]
= n−1+λ2p(p−1)/2.

I Hence define

λ̃2,p
n =

2
p(p − 1)

(
1 +

log Sn(p)
log n

)
or

λ̂2,p
n =

2
p(p − 1)

(
1 +

log S2n(p)− log Sn(p)
log 2

)
.



Convergence rate

Theorem 1 (Ossiander and Waymire 2000, D. 2011,
Ludeña and Soulier 2011)
Let X a log-normal Mandelbrot cascade, or a log-normal
multifracal random measure (Bacry and Muzy 2003). Then for
some p∗ > 1 and all p ∈ (0,p∗), p 6= 1,

|λ̂2,p
n − λ2| � n−1/2+λ2p2/2.

I Slower rate of convergence than the usual parametric
rate 1/

√
n.

Are there estimation procedures that converge faster ?



Logarithms of increments

Abry, Jaffard, Roux and Wendt (2007); Bacry, Kozhemyak and
Muzy (2008)→ estimates based on the properties of the log of
the increments (or wavelet coef., or wavelete leaders.)

I From the scaling property:(
X (t/n), t ∈ I

) d
= 1/n W1/n

(
X (t), t ∈ I

)
with log W1/n a Gaussian r.v. with variance λ2 log n.

I Let xn,k = log |X ((k + 1)/n)− X (k/n)|, then

xn,k
d
= − log(n) + wn,k + mn,k , 0 ≤ k ≤ n − 1,

with (wn,k )k a Gaussian sequence with covariance
Cov[wn,k ,wn,k ′ ] ≈ c + λ2 log(n/(|k − k ′|+ 1)), while (mn,k )
can be considered as a "noise".



Using the moments of the log of the increments for
estimating λ2

From the previous decomposition, we hope to recover λ2 from
the second order properties of wn,k .

I Abry et al. 2007: estimator based on the empirical
variance of the xn,k ’s.
→ I find a rate of convergence log n√

n .

I Bacry et al. 2008: estimator based on the empirical
covariance of the xN,k ’s.

→ rate of convergence
√

log n√
n .

I D., 2011: estimator based on the empirical variance of
xN,k+1 − xN,k .
→ rate of convergence 1√

n .
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Figure: Empirical distribution of the estimators for 100 simulations of a
log-normal MRM; λ2 = 0.1; N = 32 768.



Conclusion

I How accurately can we characterize the multifractality of
some data when the number of data grows?

I In the "simple" case of log-normal random cascades,
multifractality is characterized by a single real number, the
intermittency coefficient.

I We find different convergence rates for different estimation
procedures of this coefficient.

I In particular, the "usual" approach based on the empirical
moments of the increments of the process is sub-optimal.
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