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The setting



Statistical inference for multifractal processes

» Let X = (X(t), t > 0) a real-valued random process s.t.
E[|X(t+s) - X()P] ~s¢®)  ass—0.

» Holder inequality: p — ¢(p) is a concave function. We
say that X is monofractal if { is linear, and X is
multifractal if ¢ is strictly concave.

— multifractal formalism, Hélder regularity of the sample
paths of X.

» Suppose that we have some data Xo, X /p, ..., Xi.

Can we recognize if X is mono- or multifractal? and how
accurately can we reconstruct ¢ as the number of data n
grows ?

— Applications to real data: turbulence, finance...



Scaling exponent on financial data
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Pointwise estimation vs. cumulant estimation

Estimating ((p) for all p in some real interval:

» First possibility: find consistent estimates of
¢(p1),- -, C¢(Pu,) With up, — +o00 as the number of data n
grows.

» Second possibility: estimate ¢(0), ¢/(0), ¢”(0), ...
Intermittency coefficient: ¢”(0) which indicates whether ¢
is linear or not.

» Here | consider processes of random cascades that satisfy
a scaling property: for some interval / and all r € (0, 1)

(X(rt), te 1) L rw,(X(t), te i)

with W, a positive r.v. indep. of X. Then ¢(¥)(0) can be
recovered from E [log" W;].



Mandelbrot cascades [Mandelbrot 1974, Kahane and
Peyriere 1976]

A Mandelbrot cascade is a continuous, nhonnegative and
increasing process (X(t), t € [0, T]) . Let W a positive r.v.
with E[W] = 1, and

(W, i €{0,1}, k e N)

i.i.d. copies of W. X(t) is defined as the limit of the sequence
t
Xi1(1) :/o (Woluepo,1/2) + Walueptja,1)du

t
Xa(1) :/0 (W0W001u€[071/4] + WoWo11ue[1/4,1/2)

+ Wi Wioluept 27374 + Wi Wii1yeqayang)du
Xs(t) =...



Log-normal cascades

» More elaborate framework: grid free constructions of
random cascades: Kahane (1985), Barral and Mandelbrot
(2002), Bacry and Muzy (2003)...

» Popular setting: "log-normal’ cascades: log W is a
Gaussian random variable with variance 2.

» They are multifracal processes with scaling exponent

((p) = p—Np(p—1)/2.

» Hence estimating the function ( is the same as simply
estimating the scalar \> — the intermittency coefficient.



Estimation procedures and convergence rates



Estimation based on the empirical moments

Idea: approximate the true theoretical moments by empirical
moments.

> Let o
Sa(p) = j,kz IX((k -+ 1)/m) ~ X(K/m)P.
=0
Then from the multifractal property
Sn(p) ~ E[|X((k +1)/n) = X(k/n)[P] = n~"+Pe=1/2,

» Hence define

N 2 log Sn(p)

2,p n

An _p(p—1)<1 log n )

o 2 10g Son(p) — 109 Sn(p)
12,p 09 o2p(P) — 109 on(p
An _p(p—1)<1+ log2 >




Convergence rate

Theorem 1 (Ossiander and Waymire 2000, D. 2011,
Ludena and Soulier 2011)

Let X a log-normal Mandelbrot cascade, or a log-normal
multifracal random measure (Bacry and Muzy 2003). Then for
some p* > 1andallp € (0,p*), p#1,

|3\’27,p _ )\2| - nf1/2+/\2p2/2.

» Slower rate of convergence than the usual parametric

rate 1//n.

Are there estimation procedures that converge faster ?



Logarithms of increments

Abry, Jaffard, Roux and Wendt (2007); Bacry, Kozhemyak and
Muzy (2008) — estimates based on the properties of the log of
the increments (or wavelet coef., or wavelete leaders.)

» From the scaling property:
(X(t/n), te ) £1/n W, (X(1), t € )

with log W; ,, a Gaussian r.v. with variance A2 log n.
» Let x,x =log [X((k +1)/n) — X(k/n)|, then

Xnk £ —10g(n) + Wk + Mp, 0 < k<n—1,

with (w, )« a Gaussian sequence with covariance
CoV[Wnk, Wni] = ¢+ A2 log(n/(lk — K'| + 1)), while (mp k)
can be considered as a "noise".



Using the moments of the log of the increments for
estimating )2

From the previous decomposition, we hope to recover \? from
the second order properties of w;, x.

» Abry et al. 2007: estimator based on the empirical
variance of the x, «’s.
logn

— | find a rate of convergence NG

» Bacry et al. 2008: estimator based on the empirical
covariance of the xy «’s.

logn

N

» D., 2011: estimator based on the empirical variance of
XN k+1 — XN k-
— rate of convergence

— rate of convergence

1
NG
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Figure: Empirical distribution of the estimators for 100 simulations of a
log-normal MRM; X2 = 0.1; N = 32 768.



Conclusion

» How accurately can we characterize the multifractality of
some data when the number of data grows?

» In the "simple" case of log-normal random cascades,
multifractality is characterized by a single real number, the
intermittency coefficient.

» We find different convergence rates for different estimation
procedures of this coefficient.

» In particular, the "usual" approach based on the empirical
moments of the increments of the process is sub-optimal.
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