Multifractal analysis of Bernoulli convolutions associated with Salem numbers

De-Jun Feng

The Chinese University of Hong Kong

Fractals and Related Fields II, Porquerolles - France, June 13th-17th 2011

Bernoulli convolutions

For any $\lambda \in (0,1)$, the Bernoulli convolution μ_{λ} is the distribution of $\sum_{n=0}^{\infty} \epsilon_n \lambda^n$, where the coefficients ϵ_n are either -1 or 1, chosen independently with probability $\frac{1}{2}$ for each.

$$\blacktriangleright \ \mu_{\lambda} = \bigotimes_{n=0}^{\infty} \frac{1}{2} (\delta_{-\lambda^n} + \delta_{\lambda^n}).$$

 \blacktriangleright μ_{λ} can be expressed as the self-similar measure satisfying the equation

$$\mu_{\lambda} = \frac{1}{2}\mu_{\lambda} \circ S_1^{-1} + \frac{1}{2}\mu_{\lambda} \circ S_2^{-1},\tag{1}$$

where $S_1(x) = \lambda x - 1$ and $S_2(x) = \lambda x + 1$.

▶ When $\lambda \in (0,1/2)$, μ_{λ} is a singular measure supported on a Cantor set. When $\lambda \in [1/2,1)$, the support of μ_{λ} is an interval.

An Erdös problem

- ▶ The fundamental question about μ_{λ} is to decide for which $\lambda \in \left(\frac{1}{2},1\right)$ this measure is absolutely continuous and for which λ it is singular. It is well known that for each $\lambda \in (1/2,1)$, μ_{λ} is continuous, and it is either purely absolutely continuous or purely singular.
- ▶ Solomyak (1995) proved that μ_{λ} is absolutely continuous for a.e. $\lambda \in (1/2,1)$. In the other direction, Erdös (1939) proved that if λ^{-1} is a Pisot number, i.e. an algebraic integer whose algebraic conjugates are all inside the unit disk, then μ_{λ} is singular.
- ▶ It is an **open problem** whether the Pisot reciprocals are the only class of λ 's in $(\frac{1}{2},1)$ for which μ_{λ} is singular. This question is far from being answered.

Possible candidates for counter-examples

- ▶ There appears to be a general belief that the best candidates for counter-examples are the reciprocals of **Salem numbers**. A number $\beta > 1$ is called a Salem number if it is an algebraic integer whose algebraic conjugates all have modulus no greater than 1, with at least one of which on the unit circle.
- ▶ A well-known class of Salem numbers are the largest real roots β_n of the polynomials $x^n x^{n-1} \cdots x + 1$; where $n \ge 4$.

- Indeed, when λ^{-1} is a Salem number, the Fourier transform of μ_{λ} has no uniform decay at infinity (**Kahane (1971)**), i.e., $\limsup_{\xi \to \infty} \widehat{\mu_{\lambda}}(\xi) \xi^{\epsilon} = \infty$ for all $\epsilon > 0$. Hence, $\frac{d\mu_{\lambda}}{dx} \notin C^{1}(\mathbb{R})$.
- Let β_n be the largest root of the polynomials $x^n-x^{n-1}-\cdots-x+1$; where $n\geq 4$. It was shown that for any $\epsilon>0$, the density of μ_{1/β_n} , if it exists, is not in $L^{3+\epsilon}(\mathbb{R})$ when n is large enough (F. and Wang (2004)).
- ▶ See Peres-Schlag-Solomyak (Progress in Probability, 2000), Solomyak (Proc. Symp. in Pure Math., 2004) for a good survey on Bernoulli convolutions.

Our target

To study the local dimensions and the multifractal structure of μ_{λ} when λ^{-1} is a Salem number in (1,2). Very little has been known in the literature.

Notation

Let μ be a finite Borel measure in \mathbb{R}^d with compact support.

▶ For $x \in \mathbb{R}^d$, the **local dimension** of μ at x is defined as

$$d_{\mu}(x) = \lim_{r \to 0} \frac{\log \mu(B_r(x))}{\log r},$$

provided that the limit exists.

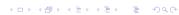
▶ For $\alpha \in \mathbb{R}$, the α -level set of μ is defined as

$$E_{\mu}(\alpha) = \{ x \in \mathbb{R} : d_{\mu}(x) = \alpha \}.$$

▶ For $q \in \mathbb{R}$, the L^q spectrum of μ is defined as

$$au_{\mu}(q) = \liminf_{r o 0} rac{\log \Theta_{\mu}(q;r)}{\log r},$$

where $\Theta_{\mu}(q; r) = \sup \sum_{i} \mu(B_{r}(x_{i}))^{q}$ for $r > 0, q \in \mathbb{R}$, and the supremum is taken over all families of disjoint balls $\{B_{r}(x_{i})\}_{i}$ with $x_{i} \in \operatorname{supp}(\mu)$.



Multifractal analysis

- ▶ One of the main objectives is to study the **dimension** spectrum $\dim_H E_\mu(\alpha)$ and its relation with the L^q spectrum $\tau_\mu(q)$
- ► A heuristic principle known as multifractal formalism (MF) was proposed by Halsey et al (1986):

$$\dim_{H} E_{\mu}(\alpha) = \tau_{\mu}^{*}(\alpha) := \inf\{\alpha q - \tau_{\mu}(q) : q \in \mathbb{R}\}.$$
 (2)

- MF is valid for some good measures, including
 - ► Gibbs measures for smooth conformal dynamical systems (e.g., Rand (1989), Pesin-Weiss (1997)).
 - ► Self-similar measures with open set condition (Cawley-Mauldin (1992), Brown-Michon-Peyrière(1992), Olsen (1995), Patzschke (1997)).
 - More precisely, for these measures,
 - $ightharpoonup au_{\mu}(q)$ is real analytic over \mathbb{R} ;
 - $\{\alpha: E_{\mu}(\alpha) \neq \emptyset\} = [\alpha_{\min}, \alpha_{\max}], \text{ where }$

$$lpha_{\mathsf{min}} = \lim_{q o \infty} au_{\mu}(q)/q, \quad lpha_{\mathsf{max}} = \lim_{q o -\infty} au_{\mu}(q)/q.$$

• $\dim_H E_{\mu}(\alpha) = \tau_{\mu}^*(\alpha)$ for $\alpha \in [\alpha_{\min}, \alpha_{\max}]$.

- ▶ MF is not valid for general measures. However, the upper bound $\dim_H E_\mu(\alpha) \le \tau_\mu^*(\alpha)$ always holds. (e.g., Lau-Ngai (1999)).
- ► Question: Is MF valid for Bernoulli convolutions (self-similar measures with overlaps)?

- Question: Is MF valid for Bernoulli convolutions (self-similar measures with overlaps)?
- ▶ Difficulty:
 - ▶ hard to analyze the local behavior of μ and estimate the local dimension of μ ;
 - ▶ hard to estimate the L^q -spectrum $\tau_{\mu}(q)$ and its regularity property.

Historic remarks: When $1/\lambda$ is a Pisot number

- Many works in the literature: e.g., Alexander-Yorke (1984), Przytycki-Urbanski (1989), Alexander-Zagier (1991), Lau (1992), Ledrappier-Porzio (1994, 1996),
 Strichartz-Taylor-Zhang (1995), Lau-Ngai (1998, 1999), Lalley (1998), Porzio (1998), Vershik-Sidorov (1998), F. (2003, 2005, 2009), F. & Olivier (2003), F. & Lau (2009).
- ▶ Phase transition for q<0 in the golden ratio case ($\lambda=\frac{\sqrt{5}-1}{2}$). That is, $\tau_{\mu}(q)$ is not differentiable at some q<0. (F., 1999, 2005).

Similar exceptional phenomena for other self-similar measures with overlaps (e.g., Hu-Lau (2001), F. -Lau-Wang (2005), Shmerkin (2005), Testud (2006))

- ► So far the most complete result is the following (F., 2009):

 - ▶ \exists an interval $I \subset \text{supp}(\mu)$ so that, for $\nu = \mu|_{I}$,
 - $E_{\nu}(\alpha) \neq \emptyset$ if and only if $\alpha \in [\tau'_{\nu}(+\infty), \tau'_{\nu}(-\infty)]$.
 - $\dim_H E_{\nu}(\alpha) = \tau_{\nu}^*(\alpha)$ for each $\alpha \in [\tau_{\nu}'(+\infty), \tau_{\nu}'(-\infty)]$.
 - $\tau_{\nu}(q) = \tau_{\mu}(q)$ for $q \geq 0$.
- ► The above results hold for self-similar measures with weak separation condition (F. & Lau (2009)); this condition was introduced by Lau-Ngai (1999).
- ▶ We point out that in the pisot case, τ_{μ} is **differentiable** on $(0,\infty)$ (F. (2003)); and $[\tau'_{\mu}(\infty),\tau'_{\mu}(0-)]$ contains a **neighborhood of** 1. (F. & Sidorov (2011)).
- ▶ Based on products of random matrices and the thermodynamic formalism.

Historic remarks: Non-Pisot case

▶ For every $\lambda \in (1/2, 1)$,

$$E_{\mu_{\lambda}}(\alpha) \neq \emptyset$$
 and $\dim_H E_{\mu_{\lambda}}(\alpha) = \tau_{\mu_{\lambda}}^*(\alpha)$

for those $\alpha=\tau'_{\mu_{\lambda}}(q),\ q>1$, provided that $\tau'_{\mu_{\lambda}}(q)$ exists at q. The result holds for all self-conformal measures with overlaps. (F., 2007)

▶ **Key idea**: Show that for any q>1, \exists a measure ν_q such that

$$\nu_q(B_r(x)) \leq r^{-\tau_\mu(q)} \mu_\lambda(B_{16r}(x))^q.$$

(Inspired from works of Peres-Solomyak (2000), and Brown-Michon-Peyriere (1992)).

Then apply some large-deviation like arguments as in Brown-Michon-Peyriere (1992), Ben Nasr (1994) and Testud (2006).

- In the case that λ^{-1} is a Salem number, the condition q>1 can be relaxed to q>0. (F., 2007)
- ▶ However, it still remains open whether $\tau_{\mu_{\lambda}}$ is differentiable over $(0, \infty)$ for each λ . Although by concavity $\tau_{\mu_{\lambda}}$ has at most countably many non-differentiable points, no much information can be provided for the range $\{\alpha: \alpha = \tau'_{\mu_{\lambda}}(q) \text{ for some } q > 0\}.$
- ▶ Solomyak's Question: Does the range of local dimensions of μ_{λ} contain an interval?

Our main results

Theorem (F., preprint)

Let $\lambda \in (1/2,1)$ so that λ^{-1} is a Salem number. Then

- (i) $E_{\mu_{\lambda}}(\alpha) \neq \emptyset$ if $\alpha \in [\tau'_{\nu_{\lambda}}(+\infty), \tau'_{\mu_{\lambda}}(0+)]$, where $\tau'_{\mu_{\lambda}}(+\infty) := \lim_{q \to +\infty} \tau_{\mu_{\lambda}}(q)/q$, and $\tau'_{\mu_{\lambda}}(0+)$ denotes the right derivative of $\tau_{\mu_{\lambda}}$ at 0.
- (ii) For any $\alpha \in [\tau'_{\nu_{\lambda}}(+\infty), \tau'_{\mu_{\lambda}}(0+)]$, $\dim_{H} E_{\mu_{\lambda}}(\alpha) = \tau^{*}_{\mu_{\lambda}}(\alpha) := \inf\{\alpha q \tau_{\mu_{\lambda}}(q): \ q \in \mathbb{R}\}.$

Theorem (F., preprint)

For $n \geq 4$, let β_n be the largest real root of the polynomials $x^n - x^{n-1} - \cdots - x + 1$, and let $\lambda_n = \beta_n^{-1}$. Then for $\lambda = \lambda_n$, $\tau'_{\nu_\lambda}(+\infty) < 1 \leq \tau'_{\mu_\lambda}(0+)$; and hence the range of local dimensions of μ_λ contains a non-degenerate interval.

Sketched proof

1. (Garsia's Lemma (1962)): Let β be a Salem number. Then \exists a polynomial f(x) such that for any $\epsilon_1, \ldots \epsilon_k \in \{0, 1, -1\}$,

$$\left|\sum_{n=1}^k \epsilon_n \beta^n\right| > \frac{1}{f(k)}$$

if
$$\sum_{n=1}^{k} \epsilon_n \beta^n \neq 0$$
.

2. Assume that λ^{-1} is a Salem number in (1,2). For $n \in \mathbb{N}$, denote

$$t_n = \sup_{x \in \mathbb{R}} \# \{ S_{i_1...i_n} : i_1...i_n \in \{1,2\}^n, \ S_{i_1...i_n}(K) \cap [x-\lambda^n, x+\lambda^n] \neq \emptyset \},$$

where S_1, S_2 are given as in (1), $S_{i_1...i_n} := S_{i_1} \circ \cdots \circ S_{i_n}$ and $K := [-\frac{1}{1-\lambda}, \frac{1}{1-\lambda}]$ is the attractor of $\{S_1, S_2\}$. By Garsia's Lemma,

$$\lim_{n\to\infty}\frac{\log t_n}{n}=0.$$

Key step

3. Local box-counting principle For Salem case:

Given $n \in \mathbb{N}$, $x \in \mathbb{R}$ with $\mu(B_{2^{-n-1}}(x)) > 0$. Let q > 0 so that $\alpha = \tau'_{\mu}(q)$ exists.

Then when m is suitably large, m=o(n), which can be controlled delicately by n,q and $\mu(B_{2^{-n}}(x))/\mu_{\lambda}(B_{2^{-n-1}}(x)))$, there exist

$$N \succeq 2^{m\tau_{\mu}^*(\alpha)}$$

many disjoint balls $B_{2^{-n-m}}(x_i)$, $i=1,\ldots,N$, contained in $B_{2^{-n}}(x)$ such that

$$\frac{\mu(B_{2^{-n-m}}(x_i))}{\mu(B_{2^{-n}}(x))} \sim 2^{-m\alpha},$$

and

$$\frac{\mu(B_{2^{-n-m+1}}(x_i))}{\mu(B_{2^{-n-m-1}}(x_i))} \le C$$

where C is a constant independent of n, m.

Comparison

Classical box-counting principle

For any measure μ , let q>0 so that $\alpha=\tau'_{\mu}(q)$ exists and let $k\in\mathbb{N}$. Then there exists a sequence $r_n\downarrow 0$ such that for each n, there are $N_n\succeq r_n^{-\tau^*_{\mu}(\alpha)}$ many disjoint balls $B_{r_n}(x_i)$, so that

$$\mu(B_{r_n}(x_i)) \sim r_n^{\alpha},$$

4. Moran construction

Applying this local box-counting principle, for any $\alpha \in [\tau'_{\nu_{\lambda}}(+\infty), \tau'_{\mu_{\lambda}}(0+)]$, we give a delicate construction of a Cantor-type subset of $E_{\mu_{\lambda}}(\alpha)$ with **Moran structure** such that its Hausdorff dimension is greater or equal to $\tau^*_{\mu_{\lambda}}(\alpha)$. \square

Question: Since Bernoulli convolution associated with Salem numbers may have a rich multifractal structure, can we conclude that they are singular?

Absolutely self-similar measures with non-trivial multifractal structures

Theorem (F., preprint)

For $\lambda, u \in (0,1)$, let $\Phi_{\lambda,u} := \{S_i\}_{i=1}^3$ be the IFS on $\mathbb R$ given by

$$S_1(x) = \lambda x$$
, $S_2(x) = \lambda x + u$, $S_3(x) = \lambda x + 1$.

Let $\mu_{\lambda,u}$ be the self-similar measure associated with $\Phi_{\lambda,u}$ and the probability vector $\{1/4,5/12,1/3\}$, i.e., $\mu=\mu_{\lambda,u}$ satisfies

$$\mu = \frac{1}{4}\mu \circ S_1^{-1} + \frac{5}{12}\mu \circ S_2^{-1} + \frac{1}{3}\mu \circ S_3^{-1}.$$

Then for \mathcal{L}^2 -a.e. $(\lambda, u) \in (0.3405, 0.3439) \times (1/3, 1/2)$, $\mu_{\lambda, u}$ is absolutely continuous, and the range of local dimensions of $\mu_{\lambda, u}$ contains a non-degenerate interval, on which the multifractal formalism for $\mu_{\lambda, u}$ is valid.

Idea

Applying a result of **Falconer (1999, Nonlinearity)**, for 1 < q < 2, for each $0 < \lambda < 1/2$, and for \mathcal{L} -a.e. $u \in (0,1)$,

$$\tau(q,\lambda,u) = \min \left\{ \frac{\log ((1/4)^q + (5/12)^q + (1/3)^q)}{\log \lambda}, \ q - 1 \right\}.$$

For $0 < \lambda < 0.3438$ and q > 1.5,

$$\tau(q,\lambda,u) = \frac{\log((1/4)^q + (5/12)^q + (1/3)^q)}{\log \lambda} > q - 1.$$

By **Feng(2007)**, for every $0 < \lambda < 0.3438$, and \mathcal{L} -a.e. $u \in (0,1)$, $\mu_{\lambda,u}$ contains the non-degenerate interval $\{\frac{d\tau(q,\lambda,u)}{dq}:\ 1.5 < q < 2\}$, on which the multifractal formalism for $\mu_{\lambda,u}$ is valid.

Absolute continuity comes from a general result by **Peres and Solomyak (1998, TAMS)**.

A recent result of Jordan, Shmerkin and Solomyak on Biased Bernoulli convolutions

For each $\lambda \in (1/2,\gamma)$, where $\gamma \approx 0.554958$ is the root of $1=x^{-1}+\sum_{n=1}^{\infty}x^{-2n}$, and $p\in (0,1/2)$, the biased Bernoulli convolution ν_{λ}^{p} (which is the the infinite convolution product of the distributions $p\delta_{-\lambda^{n}}+(1-p)\delta_{\lambda^{n}}$) always contain a non-trivial interval in the range of its local dimensions.

It is unknown whether or not the multifractal formalism holds for ν^{p}_{λ} on this interval.

Open questions for self-similar measures with overlaps

- ▶ Is $\tau_{\mu}(q)$ always differentiable over $(0, \infty)$?
- ▶ Is the MF valid when 0 < q < 1?

D. J. Feng, Multifractal analysis of Bernoulli convolutions associated with Salem numbers. Preprint. (available on www.math.cuhk.edu.hk/ \sim djfeng)

Thank you!!!