Sets which are not tube null and projections of random measures

Pablo Shmerkin, joint work with Ville Suomala (Oulu)

Department of Mathematics
University of Surrey

Porquerolles, 13 Juin 2011
Outline

1 Tube null sets and localization
 - Tube-null sets
 - Localization of the Fourier transform
 - Results on non-tube-null sets

2 Projections of random measures
 - Projections of measures and tube-null sets
 - Fractal percolation and projections
 - Projections of more general random measures
Outline

1. Tube null sets and localization
 - Tube-null sets
 - Localization of the Fourier transform
 - Results on non-tube-null sets

2. Projections of random measures
 - Projections of measures and tube-null sets
 - Fractal percolation and projections
 - Projections of more general random measures
Setting

- We work in \mathbb{R}^2 for simplicity. Everything I’ll say works in any dimension.
- Everything I discuss takes places in some nice bounded domain $\Omega \subset \mathbb{R}^2$, for example the unit disk or unit square.
- Lebesgue measure on Ω is denoted \mathcal{L}.
- An ε-tube T is an ε-neighborhood of a line (intersected with Ω!). It has area $O(\varepsilon)$.
- T or T_i will always denote a tube.
We work in \mathbb{R}^2 for simplicity. Everything I’ll say works in any dimension.

Everything I discuss takes places in some nice bounded domain $\Omega \subset \mathbb{R}^2$, for example the unit disk or unit square.

Lebesgue measure on Ω is denoted \mathcal{L}.

An ε-tube T is an ε-neighborhood of a line (intersected with Ω!). It has area $O(\varepsilon)$.

T or T_i will always denote a tube.
Setting

- We work in \mathbb{R}^2 for simplicity. Everything I’ll say works in any dimension.
- Everything I discuss takes places in some nice bounded domain $\Omega \subset \mathbb{R}^2$, for example the unit disk or unit square.
- Lebesgue measure on Ω is denoted \mathcal{L}.
- An ε-tube T is an ε-neighborhood of a line (intersected with Ω!). It has area $O(\varepsilon)$.
- T or T_i will always denote a tube.
We work in \mathbb{R}^2 for simplicity. Everything I’ll say works in any dimension.

Everything I discuss takes places in some nice bounded domain $\Omega \subset \mathbb{R}^2$, for example the unit disk or unit square.

Lebesgue measure on Ω is denoted \mathcal{L}.

An ε-tube T is an ε-neighborhood of a line (intersected with Ω!). It has area $O(\varepsilon)$.

T or T_i will always denote a tube.
We work in \mathbb{R}^2 for simplicity. Everything I’ll say works in any dimension.

Everything I discuss takes places in some nice bounded domain $\Omega \subset \mathbb{R}^2$, for example the unit disk or unit square.

Lebesgue measure on Ω is denoted \mathcal{L}.

An ε-tube T is an ε-neighborhood of a line (intersected with Ω!). It has area $O(\varepsilon)$.

T or T_i will always denote a tube.
Tube-null sets

Definition

A set $E \subset \Omega$ is **tube-null** if, for any $\varepsilon > 0$, it can be covered by a countable union of tubes $\{T_i\}$ with $\sum_i \mathcal{L}(T_i) < \varepsilon$.

Easy Remarks

- Any tube-null set is null.
- A subset of a tube-null set is tube-null.
- If πE is null (in \mathbb{R}) for some linear $\pi : \mathbb{R}^2 \to \mathbb{R}$, then E is tube-null.
Tube-null sets

Definition

A set $E \subset \Omega$ is tube-null if, for any $\varepsilon > 0$, it can be covered by a countable union of tubes $\{T_i\}$ with $\sum_i \mathcal{L}(T_i) < \varepsilon$.

Easy Remarks

- Any tube-null set is null.
- A subset of a tube-null set is tube-null.
- If πE is null (in \mathbb{R}) for some linear $\pi : \mathbb{R}^2 \to \mathbb{R}$, then E is tube-null.
Definition

A set \(E \subset \Omega \) is \textit{tube-null} if, for any \(\varepsilon > 0 \), it can be covered by a countable union of tubes \(\{T_i\} \) with \(\sum_i \mathcal{L}(T_i) < \varepsilon \).

Easy Remarks

- Any tube-null set is null.
- A subset of a tube-null set is tube-null.
- If \(\pi E \) is null (in \(\mathbb{R} \)) for some linear \(\pi : \mathbb{R}^2 \to \mathbb{R} \), then \(E \) is tube-null.
Tube-null sets

Definition

A set $E \subset \Omega$ is tube-null if, for any $\varepsilon > 0$, it can be covered by a countable union of tubes $\{T_i\}$ with $\sum_i L(T_i) < \varepsilon$.

Easy Remarks

- Any tube-null set is null.
- A subset of a tube-null set is tube-null.
- If πE is null (in \mathbb{R}) for some linear $\pi : \mathbb{R}^2 \to \mathbb{R}$, then E is tube-null.
Tube-null sets

Definition

A set $E \subset \Omega$ is **tube-null** if, for any $\varepsilon > 0$, it can be covered by a countable union of tubes $\{T_i\}$ with $\sum_i L(T_i) < \varepsilon$.

Easy Remarks

- Any tube-null set is null.
- A subset of a tube-null set is tube-null.
- If πE is null (in \mathbb{R}) for some linear $\pi : \mathbb{R}^2 \to \mathbb{R}$, then E is tube-null.
Properties of tube-null sets

(Carbery-Soria-Vargas) If E has σ-finite \mathcal{H}^1-measure, then E is tube-null (idea: decompose E into rectifiable and purely unrectifiable parts).

(Harangi) The Von Koch snowflake is tube-null.

(Carbery-Soria-Vargas) Let $C \subset [0, 1]$ be a Cantor set of dimension $> 1/2$. The Cantor target

$$E = \{re^{2\pi it} : r \in C, t \in [0, 1]\}$$

is not tube-null (Note: $\dim_H(E) \geq 1 + \dim_H(E) > 3/2$).
Properties of tube-null sets

- (Carbery-Soria-Vargas) If E has σ-finite \mathcal{H}^1-measure, then E is tube-null (idea: decompose E into rectifiable and purely unrectifiable parts).
- (Harangi) The Von Koch snowflake is tube-null.
- (Carbery-Soria-Vargas) Let $C \subset [0, 1]$ be a Cantor set of dimension $> 1/2$. The Cantor target

$$E = \{re^{2\pi it} : r \in C, t \in [0, 1]\}$$

is not tube-null (Note: $\dim H(E) \geq 1 + \dim H(E) > 3/2$).
Properties of tube-null sets

(Carbery-Soria-Vargas) If E has σ-finite \mathcal{H}^1-measure, then E is tube-null (idea: decompose E into rectifiable and purely unrectifiable parts).

(Harangi) The Von Koch snowflake is tube-null.

(Carbery-Soria-Vargas) Let $C \subset [0, 1]$ be a Cantor set of dimension $> 1/2$. The Cantor target

$$E = \{re^{2\pi it} : r \in C, t \in [0, 1]\}$$

is not tube-null (Note: $\dim_H(E) \geq 1 + \dim_H(E) > 3/2$).
A non-tube-null Cantor target (dim $> 3/2$)
The localization problem

Definition

Given $f \in L^2(\mathbb{R}^d)$, let

$$S_R f(x) = \int_{|\xi| < R} \hat{f}(\xi) 2^{2\pi i x \cdot \xi} d\xi$$

be the localization of f to frequencies of modulus $\leq R$.

Open problem

Is it true that for any $f \in L^2$, $f(x) = \lim_{R \to \infty} S_R f(x)$ for almost every x?

Remark

Famous result in dimension 1. Open in higher dimensions.
The localization problem

Definition

Given $f \in L^2(\mathbb{R}^d)$, let

$$S_R f(x) = \int_{|\xi| < R} \hat{f}(\xi) 2^{2\pi i x \cdot \xi} d\xi$$

be the localization of f to frequencies of modulus $\leq R$.

Open problem

Is it true that for any $f \in L^2$,

$$f(x) = \lim_{R \to \infty} S_R f(x) \quad \text{for almost every } x \ ?.$$

Remark

Famous result in dimension 1. Open in higher dimensions.
The localization problem

Definition

Given \(f \in L^2(\mathbb{R}^d) \), let\[S_R f(x) = \int_{|\xi|<R} \hat{f}(\xi) 2^{d} 2\pi^d ix \cdot \xi \, d\xi \]
be the localization of \(f \) to frequencies of modulus \(\leq R \).

Open problem

Is it true that for any \(f \in L^2 \),
\[f(x) = \lim_{R \to \infty} S_R f(x) \quad \text{for almost every } x. \]

Remark

Famous result in dimension 1. Open in higher dimensions.
Partial results on localization

Theorem (Carbery-Soria 1988)

Let Ω be a compact domain (for example unit disk). If $f \in L^2(\mathbb{R}^2)$ and $\text{supp}(f) \cap \Omega = \emptyset$, then

$$S_R f(x) \to 0 \quad \text{for almost every } x \in \Omega.$$

Remark

In dimension 1, this is true with uniform (everywhere) convergence (Riemann localization principle).
Theorem (Carbery-Soria 1988)

Let Ω be a compact domain (for example unit disk). If $f \in L^2(\mathbb{R}^2)$ and $\text{supp}(f) \cap \Omega = \emptyset$, then

$$S_R f(x) \to 0 \quad \text{for almost every } x \in \Omega.$$

Remark

In dimension 1, this is true with uniform (everywhere) convergence (Riemann localization principle).
SDLP’s

Theorem (Carbery-Soria 1988)

Let Ω be a compact domain (for example unit disk). If $f \in L^2(\mathbb{R}^2)$ and $\text{supp}(f) \cap \Omega = \emptyset$, then

$$S_R f(x) \to 0 \quad \text{for almost every } x \in \Omega.$$

Definition

A set $E \subset \Omega$ is called a Set of divergence for the localization problem (SDLP) if there exists $f \in L^2(\mathbb{R}^2)$ with $\text{supp}(f) \cap \Omega = \emptyset$, such that

$$S_R f(x) \not\to 0 \quad \text{for every } x \in E.$$
Theorem (Carbery-Soria 1988)

Let \(\Omega \) be a compact domain (for example unit disk). If \(f \in L^2(\mathbb{R}^2) \) and \(\text{supp}(f) \cap \Omega = \emptyset \), then

\[
S_R f(x) \to 0 \quad \text{for almost every } x \in \Omega.
\]

Definition

A set \(E \subset \Omega \) is called a Set of divergence for the localization problem (SDLP) if there exists \(f \in L^2(\mathbb{R}^2) \) with \(\text{supp}(f) \cap \Omega = \emptyset \), such that

\[
S_R f(x) \not\to 0 \quad \text{for every } x \in E.
\]
Tube null sets are SDLP

Definition

A set $E \subset \Omega$ is called a *Set of divergence for the localization problem (SDLP)* if there exists $f \in L^2(\mathbb{R}^2)$ with $\text{supp}(f) \cap \Omega = \emptyset$, such that

$$S_R f(x) \not\to 0 \quad \text{for every } x \in E.$$

Theorem (Carbery, Soria and Vargas 2007)

Every tube null set $E \subset \Omega$ is a SDLP.

Open problem

Is every SDLP tube-null?
Definition

A set $E \subset \Omega$ is called a **Set of divergence for the localization problem (SDLP)** if there exists $f \in L^2(\mathbb{R}^2)$ with $\text{supp}(f) \cap \Omega = \emptyset$, such that

$$S_R f(x) \not\to 0 \quad \text{for every } x \in E.$$

Theorem (Carbery, Soria and Vargas 2007)

Every tube null set $E \subset \Omega$ is a SDLP.

Open problem

Is every SDLP tube-null?
Definition

A set $E \subset \Omega$ is called a **Set of divergence for the localization problem (SDLP)** if there exists $f \in L^2(\mathbb{R}^2)$ with $\text{supp}(f) \cap \Omega = \emptyset$, such that

$$S_R f(x) \not\to 0 \quad \text{for every } x \in E.$$

Theorem (Carbery, Soria and Vargas 2007)

Every tube null set $E \subset \Omega$ is a SDLP.

Open problem

Is every SDLP tube-null?
Motivated by this connection, Carbery et al asked questions on the structure of non-tube-null sets:

Questions

- What is $\inf \{ \dim_H(E) : E \text{ is not tube null} \}$? (they show it is between 1 and 3/2).

- For which s are there sets with $0 < \mathcal{H}^s(E) < \infty$ which are not tube null?

- Are there purely unrectifiable sets which are not tube null?
Questions on non-tube-null sets

Motivated by this connection, Carbery et al asked questions on the structure of non-tube-null sets:

Questions

- What is $\inf \{ \dim_H(E) : E \text{ is not tube null} \}$? (they show it is between 1 and 3/2).
- For which s are there sets with $0 < \mathcal{H}^s(E) < \infty$ which are not tube null?
- Are there purely unrectifiable sets which are not tube null?
Questions on non-tube-null sets

Motivated by this connection, Carbery et al asked questions on the structure of non-tube-null sets:

Questions

- What is $\inf\{\dim_H(E) : E \text{ is not tube null}\}$? (they show it is between 1 and 3/2).

- For which s are there sets with $0 < \mathcal{H}^s(E) < \infty$ which are not tube null?

- Are there purely unrectifiable sets which are not tube null?
Questions on non-tube-null sets

Motivated by this connection, Carbery et al asked questions on the structure of non-tube-null sets:

Questions

- *What is \(\inf \{ \dim_\mathcal{H}(E) : E \text{ is not tube null} \} ? \) (they show it is between 1 and 3/2).

- *For which \(s \) are there sets with \(0 < \mathcal{H}^s(E) < \infty \) which are not tube null?*

- *Are there purely unrectifiable sets which are not tube null?*
Theorem (P.S. and V.Suomala 2010)

Let \(h \) be a gauge function with \(h(2r) \leq 4h(r) \) and \(h(r) < \frac{r}{|\log r|^{3+\delta}} \) for some \(\delta > 0 \). Then there exists a purely unrectifiable set \(E \subset \Omega \) which is not tube-null and satisfies \(0 < \mathcal{H}^h(E) < \infty \).

Corollary (Answers to Carbery et al’s questions)

- There are non-tube-null sets of dimension 1 (and therefore of any dimension between 1 and 2).
- There are non-tube-null sets of positive and finite \(\mathcal{H}^s \)-measure for all \(s \in (1, 2] \) (this is immediate from the previous point).
- There are purely unrectifiable non-tube-null sets.
Answers on non-tube-null sets

Theorem (P.S. and V.Suomala 2010)

Let h be a gauge function with $h(2r) \leq 4h(r)$ and $h(r) < r/|\log r|^{3+\delta}$ for some $\delta > 0$. Then there exists a purely unrectifiable set $E \subset \Omega$ which is not tube-null and satisfies $0 < \mathcal{H}^h(E) < \infty$.

Corollary (Answers to Carbery et al’s questions)

- There are non-tube-null sets of dimension 1 (and therefore of any dimension between 1 and 2).
- There are non-tube-null of positive and finite \mathcal{H}^s-measure for all $s \in (1, 2]$ (this is immediate from the previous point).
- There are purely unrectifiable non-tube-null sets.
Answers on non-tube-null sets

Theorem (P.S. and V.Suomala 2010)

Let h be a gauge function with $h(2r) \leq 4h(r)$ and $h(r) < r/|\log r|^{3+\delta}$ for some $\delta > 0$. Then there exists a purely unrectifiable set $E \subset \Omega$ which is not tube-null and satisfies $0 < H^h(E) < \infty$.

Corollary (Answers to Carbery et al’s questions)

- There are non-tube-null sets of dimension 1 (and therefore of any dimension between 1 and 2).
- There are non-tube-null of positive and finite H^s-measure for all $s \in (1, 2]$ (this is immediate from the previous point).
- There are purely unrectifiable non-tube-null sets.
Theorem (P.S. and V.Suomala 2010)

Let h be a gauge function with $h(2r) \leq 4h(r)$ and $h(r) < r/|\log r|^{3+\delta}$ for some $\delta > 0$. Then there exists a purely unrectifiable set $E \subset \Omega$ which is not tube-null and satisfies $0 < \mathcal{H}^h(E) < \infty$.

Corollary (Answers to Carbery et al’s questions)

- There are non-tube-null sets of dimension 1 (and therefore of any dimension between 1 and 2).
- There are non-tube-null of positive and finite \mathcal{H}^s-measure for all $s \in (1, 2]$ (this is immediate from the previous point).
- There are purely unrectifiable non-tube-null sets.
Answers on non-tube-null sets

Theorem (P.S. and V.Suomala 2010)

Let h be a gauge function with $h(2r) \leq 4h(r)$ and $h(r) < r/|\log r|^{3+\delta}$ for some $\delta > 0$. Then there exists a purely unrectifiable set $E \subset \Omega$ which is not tube-null and satisfies $0 < \mathcal{H}^h(E) < \infty$.

Corollary (Answers to Carbery et al’s questions)

- There are non-tube-null sets of dimension 1 (and therefore of any dimension between 1 and 2).
- There are non-tube-null of positive and finite \mathcal{H}^s-measure for all $s \in (1, 2]$ (this is immediate from the previous point).
- There are purely unrectifiable non-tube-null sets.
Lemma

Let \(E \subset \Omega \). Suppose there is a measure \(\mu \) on \(\Omega \) such that:

1. \(\mu(E) > 0 \).
2. There is \(C > 0 \) such that for all lines \(\ell \subset \mathbb{R} \), \(P_\ell \mu \) is uniformly continuous, and its density \(f_\ell \) satisfies \(|f_\ell|_\infty < C \).

Then \(E \) is not tube-null.

Proof.

Clearly \(\mu(T) \leq C \mathcal{L}(T) \) for every tube. Therefore for any collection \(\{ T_i \} \) covering \(A \),

\[
0 < \mu(E) \leq \sum_i \mu(T_i) \leq C \sum_i \mathcal{L}(T_i),
\]
whence \(\sum_i \mathcal{L}(T_i) \) is bounded below, and \(E \) is not tube null.
Lemma

Let $E \subset \Omega$. Suppose there is a measure μ on Ω such that:

- $\mu(E) > 0$.
- There is $C > 0$ such that for all lines $\ell \subset \mathbb{R}$, $P_\ell \mu$ is uniformly continuous, and its density f_ℓ satisfies $|f_\ell|_{\infty} < C$.

Then E is not tube-null.

Proof.

Clearly $\mu(T) \leq C \mathcal{L}(T)$ for every tube. Therefore for any collection $\{T_i\}$ covering A,

$$0 < \mu(E) \leq \sum_i \mu(T_i) \leq C \sum_i \mathcal{L}(T_i),$$

whence $\sum_i \mathcal{L}(T_i)$ is bounded below, and E is not tube null.
Bounded projections implies tube-nullity

Lemma

Let $E \subset \Omega$. Suppose there is a measure μ on Ω such that:

1. $\mu(E) > 0$.
2. There is $C > 0$ such that for all lines $\ell \subset \mathbb{R}$, $P_\ell \mu$ is uniformly continuous, and its density f_ℓ satisfies $|f_\ell|_\infty < C$.

Then E is not tube-null.

Proof.

Clearly $\mu(T) \leq C \mathcal{L}(T)$ for every tube. Therefore for any collection $\{T_i\}$ covering A,

$$0 < \mu(E) \leq \sum_i \mu(T_i) \leq C \sum_i \mathcal{L}(T_i),$$

whence $\sum_i \mathcal{L}(T_i)$ is bounded below, and E is not tube null.
Bounded projections implies tube-nullity

Lemma

Let $E \subset \Omega$. Suppose there is a measure μ on Ω such that:

- $\mu(E) > 0$.
- There is $C > 0$ such that for all lines $\ell \subset \mathbb{R}$, $P_\ell \mu$ is uniformly continuous, and its density f_ℓ satisfies $|f_\ell|_\infty < C$.

Then E is not tube-null.

Proof.

Clearly $\mu(T) \leq C L(T)$ for every tube. Therefore for any collection $\{T_i\}$ covering A,

$$0 < \mu(E) \leq \sum_i \mu(T_i) \leq C \sum_i L(T_i),$$

whence $\sum_i L(T_i)$ is bounded below, and E is not tube null.
Bounded projections implies tube-nullity

Lemma

Let $E \subset \Omega$. Suppose there is a measure μ on Ω such that:

- $\mu(E) > 0$.
- There is $C > 0$ such that for all lines $\ell \subset \mathbb{R}$, $P_\ell \mu$ is uniformly continuous, and its density f_ℓ satisfies $|f_\ell|_\infty < C$.

Then E is not tube-null.

Proof.

Clearly $\mu(T) \leq C \mathcal{L}(T)$ for every tube. Therefore for any collection $\{T_i\}$ covering A,

$$0 < \mu(E) \leq \sum \mu(T_i) \leq C \sum \mathcal{L}(T_i),$$

whence $\sum \mathcal{L}(T_i)$ is bounded below, and E is not tube null. \qed
Bounded projections implies tube-nullity

Lemma

Let $E \subset \Omega$. Suppose there is a measure μ on Ω such that:

- $\mu(E) > 0$.
- There is $C > 0$ such that for all lines $\ell \subset \mathbb{R}$, $P_{\ell}\mu$ is uniformly continuous, and its density f_{ℓ} satisfies $|f_{\ell}|_{\infty} < C$.

Then E is not tube-null.

Proof.

Clearly $\mu(T) \leq C\mathcal{L}(T)$ for every tube. Therefore for any collection $\{T_i\}$ covering A,

$$0 < \mu(E) \leq \sum_i \mu(T_i) \leq C \sum_i \mathcal{L}(T_i),$$

whence $\sum_i \mathcal{L}(T_i)$ is bounded below, and E is not tube null.
In the last few years, there has been much interest in proving that for different classes of random sets, certain/all projections contain intervals.

If a set $E \subset \Omega$ has the property that $\pi_\ell(E)$ contains (or is) an interval for all ℓ, then E is a good candidate to being tube-null. But we really need a measure on it to prove it is tube null.

Projections of random fractal measures have not been studied as much. But there is a recent result of Y. Peres and M. Rams which almost answers the questions on non-tube-null sets (but not quite).
In the last few years, there has been much interest in proving that for different classes of random sets, certain/all projections contain intervals.

If a set $E \subset \Omega$ has the property that $\pi_\ell(E)$ contains (or is) an interval for all ℓ, then E is a good candidate to being tube-null. But we really need a measure on it to prove it is tube null.

Projections of random fractal measures have not been studied as much. But there is a recent result of Y. Peres and M. Rams which almost answers the questions on non-tube-null sets (but not quite).
In the last few years, there has been much interest in proving that for different classes of random sets, certain/all projections contain intervals.

If a set $E \subset \Omega$ has the property that $\pi_\ell(E)$ contains (or is) an interval for all ℓ, then E is a good candidate to being tube-null. But we really need a measure on it to prove it is tube null.

Projections of random fractal measures have not been studied as much. But there is a recent result of Y. Peres and M. Rams which almost answers the questions on non-tube-null sets (but not quite).
Fractal percolation

Definition

We work in the unit square \(Q_0 = [0, 1]^2 \). *Fix a base* \(M \geq 2 \) *and a probability* \(p \in (0, 1) \). *The fractal percolation limit set* \(E \) *is constructed as follows:*

- *Divide* \(Q_0 \) *into* \(M^2 \) *\(M \)-adic squares. Label each of them blue with probability* \(p \) *and red with probability* \(1 - p \). *Discard the red ones and call* \(E_1 \) *the union of the blue ones.*

- *Inside each of the surviving blue squares, repeat the process, independently from the previous stage and from each other. Call the resulting union of blue squares of second stage* \(E_2 \).*

- *Continue inductively to construct a nested sequence* \(\{ E_n \} \). *The limit set is* \(E = \bigcap_{n=1}^{\infty} E_n \).
Fractal percolation

Definition

We work in the unit square $Q_0 = [0,1]^2$. Fix a base $M \geq 2$ and a probability $p \in (0,1)$. The fractal percolation limit set E is constructed as follows:

- Divide Q_0 into M^2 M-adic squares. Label each of them \textbf{blue} with probability p and \textbf{red} with probability $1-p$. Discard the \textbf{red} ones and call E_1 the union of the \textbf{blue} ones.

- Inside each of the surviving \textbf{blue} squares, repeat the process, independently from the previous stage and from each other. Call the resulting union of \textbf{blue} squares of second stage E_2.

- Continue inductively to construct a nested sequence $\{E_n\}$. The limit set is $E = \bigcap_{n=1}^{\infty} E_n$.
Fractal percolation

Definition

We work in the unit square $Q_0 = [0, 1]^2$. Fix a base $M \geq 2$ and a probability $p \in (0, 1)$. The **fractal percolation limit set** E is constructed as follows:

- **Divide** Q_0 into M^2 M-adic squares. Label each of them **blue** with probability p and **red** with probability $1 - p$. **Discard** the red ones and call E_1 the union of the blue ones.

- **Inside** each of the surviving blue squares, repeat the process, independently from the previous stage and from each other. Call the resulting union of blue squares of second stage E_2.

- **Continue inductively** to construct a nested sequence $\{E_n\}$. The limit set is $E = \bigcap_{n=1}^{\infty} E_n$.
Fractal percolation

Definition

We work in the unit square $Q_0 = [0, 1]^2$. Fix a base $M \geq 2$ and a probability $p \in (0, 1)$. The *fractal percolation limit set* E is constructed as follows:

- Divide Q_0 into M^2 M-adic squares. Label each of them blue with probability p and red with probability $1 - p$. Discard the red ones and call E_1 the union of the blue ones.

- Inside each of the surviving blue squares, repeat the process, independently from the previous stage and from each other. Call the resulting union of blue squares of second stage E_2.

- Continue inductively to construct a nested sequence $\{E_n\}$. The limit set is $E = \bigcap_{n=1}^{\infty} E_n$.
Fractal percolation with $M = 3$, $p = .85$ (dim 1.852)
Fractal percolation with $M = 3$, $p = .85$ (dim 1.852)
Fractal percolation with $M = 3$, $p = .85$ (dim 1.852)
Fractal percolation with $M = 3$, $p = .85$ (dim 1.852)
Properties of fractal percolation

- Let $s = pM^2$ be the expect number of chosen (blue) squares. Then E is almost surely empty if $s \leq 1$, but has positive probability of being nonempty if $s > 1$. Moreover, if $s > 1$ then almost surely on $E \neq \emptyset$,

\[
\dim_H(E) = \dim_B(E) = \frac{\log s}{\log M}.
\]

- There is $0 < p_c(M) < 1$ such that if $p < p_c$ then a.s. E is totally disconnected, and if $p > p_c$ then with positive probability E contains a connected component connecting the left and right sides of the unit square (“E percolates”).
Properties of fractal percolation

Let $s = pM^2$ be the expect number of chosen (blue) squares. Then E is almost surely empty if $s \leq 1$, but has positive probability of being nonempty if $s > 1$. Moreover, if $s > 1$ then almost surely on $E \neq \emptyset$,

$$\dim_H(E) = \dim_B(E) = \frac{\log s}{\log M}.$$

There is $0 < p_c(M) < 1$ such that if $p < p_c$ then a.s. E is totally disconnected, and if $p > p_c$ then with positive probability E contains a connected component connecting the left and right sides of the unit square (“E percolates”).
Projections of fractal percolation sets

Theorem (M. Rams and K. Simon 2010)

Suppose \(p > 1/M \) (so that \(\dim_H(E) > 1 \) a.s.). Then almost surely, all orthogonal and also all radial projections of \(E \) have nonempty interior.

Remark

Falconer and Grimmet had proved this for vertical projections. The general case is much more difficult.
Theorem (M. Rams and K. Simon 2010)

Suppose $p > 1/M$ (so that $\dim_H(E) > 1$ a.s.). Then almost surely, all orthogonal and also all radial projections of E have nonempty interior.

Remark

Falconer and Grimmet had proved this for vertical projections. The general case is much more difficult.
Fractal percolation measure

Definition

*Recall that E_n are the stages in the construction of E. Write $\mu_n = p^n \mathcal{L}|_{E_n}$. Then a.s. μ_n converges weakly to some random measure μ supported on E. We call μ the **natural fractal percolation measure**.*

Theorem (Y. Peres and M. Rams 2011)

*Fix $p \in (1/M, 1)$ (so that $\dim E > 1$ a.s. on $E \neq \emptyset$).

- There is $\gamma > 0$ such that almost surely $\pi_{\ell} \mu$ is Hölder continuous with exponent γ for all non vertical/horizontal lines ℓ.
- The constant remains bounded as long as ℓ is a positive distance away from being vertical/horizontal.
- If ℓ is the x or y-axis, then $\pi_{\ell} \mu$ is still absolutely continuous with a bounded (but discontinuous) density.*
Fractal percolation measure

Definition

Recall that E_n are the stages in the construction of E. Write $\mu_n = p^n L|_{E_n}$. Then a.s. μ_n converges weakly to some random measure μ supported on E. We call μ the **natural fractal percolation measure**.

Theorem (Y. Peres and M. Rams 2011)

Fix $p \in (1/M, 1)$ (so that $\dim E > 1$ a.s. on $E \neq \emptyset$).

- There is $\gamma > 0$ such that almost surely $\pi_\ell \mu$ is Hölder continuous with exponent γ for all non vertical/horizontal lines ℓ.
- The constant remains bounded as long as ℓ is a positive distance away from being vertical/horizontal.
- If ℓ is the x or y-axis, then $\pi_\ell \mu$ is still absolutely continuous with a bounded (but discontinuous) density.
Fractal percolation measure

Definition

Recall that E_n are the stages in the construction of E. Write $\mu_n = p^n \mathcal{L}|_{E_n}$. Then a.s. μ_n converges weakly to some random measure μ supported on E. We call μ the natural fractal percolation measure.

Theorem (Y. Peres and M. Rams 2011)

Fix $p \in (1/M, 1)$ (so that $\dim E > 1$ a.s. on $E \neq \emptyset$).

- There is $\gamma > 0$ such that almost surely $\pi_\ell \mu$ is Hölder continuous with exponent γ for all non vertical/horizontal lines ℓ.

- The constant remains bounded as long as ℓ is a positive distance away from being vertical/horizontal.

- If ℓ is the x or y-axis, then $\pi_\ell \mu$ is still absolutely continuous with a bounded (but discontinuous) density.
Fractal percolation measure

Definition

Recall that E_n are the stages in the construction of E. Write $\mu_n = p^n \mathcal{L}|_{E_n}$. Then a.s. μ_n converges weakly to some random measure μ supported on E. We call μ the **natural fractal percolation measure**.

Theorem (Y. Peres and M. Rams 2011)

Fix $p \in (1/M, 1)$ (so that $\dim E > 1$ a.s. on $E \neq \emptyset$).

- There is $\gamma > 0$ such that almost surely $\pi_\ell \mu$ is Hölder continuous with exponent γ for all non vertical/horizontal lines ℓ.

- The constant remains bounded as long as ℓ is a positive distance away from being vertical/horizontal.

- If ℓ is the x or y-axis, then $\pi_\ell \mu$ is still absolutely continuous with a bounded (but discontinuous) density.
Fractal percolation measure

Definition

Recall that E_n are the stages in the construction of E. Write $\mu_n = p^n \mathcal{L}|_{E_n}$. Then a.s. μ_n converges weakly to some random measure μ supported on E. We call μ the natural fractal percolation measure.

Theorem (Y. Peres and M. Rams 2011)

Fix $p \in (1/M, 1)$ (so that $\dim E > 1$ a.s. on $E \neq \emptyset$).

- There is $\gamma > 0$ such that almost surely $\pi_{\ell} \mu$ is Hölder continuous with exponent γ for all non vertical/horizontal lines ℓ.
- The constant remains bounded as long as ℓ is a positive distance away from being vertical/horizontal.
- If ℓ is the x or y-axis, then $\pi_{\ell} \mu$ is still absolutely continuous with a bounded (but discontinuous) density.
Theorem (P.S. and V. Suomala 2011)

We give some abstract conditions on a random measure μ on Ω which guarantee that a.s. there is C (random) such that for every line ℓ, $\|P_\ell \mu\| < C$. Very roughly, the conditions are:

- $\mu = \lim_n \mu_n$, where μ_n is absolutely continuous (μ_n is the (2^{-n})-approximation to μ).
- $\{\mu_n\}$ is a martingale, i.e. for each Borel B, $\mathbb{E}(\mu_{n+1}(B)|\mu_n) = \mu_n(B)$.
- Given μ_n, the μ_{n+1}-measure of sets which are far away are independent random variables.
- The expected measure of μ_n is at least a little larger than $n^3 2^{-n}$.
- With high probability, one can find K^n lines which control all the projections of μ_n, up to some small polynomial error.
Theorem (P.S. and V. Suomala 2011)

We give some abstract conditions on a random measure μ on Ω which guarantee that a.s. there is C (random) such that for every line ℓ, $\|P_\ell \mu\| < C$. Very roughly, the conditions are:

- $\mu = \lim_n \mu_n$, where μ_n is absolutely continuous (μ_n is the (2^{-n})-approximation to μ).
- $\{\mu_n\}$ is a martingale, i.e. for each Borel B, $\mathbb{E}(\mu_{n+1}(B)|\mu_n) = \mu_n(B)$.
- Given μ_n, the μ_{n+1}-measure of sets which are far away are independent random variables.
- The expected measure of μ_n is at least a little larger than $n^3 2^{-n}$.
- With high probability, one can find K^n lines which control all the projections of μ_n, up to some small polynomial error.
Theorem (P.S. and V. Suomala 2011)

We give some abstract conditions on a random measure μ on Ω which guarantee that a.s. there is C (random) such that for every line ℓ, $\|P_\ell \mu\| < C$. Very roughly, the conditions are:

- $\mu = \lim_n \mu_n$, where μ_n is absolutely continuous (μ_n is the (2^{-n})-approximation to μ).

- $\{\mu_n\}$ is a martingale, i.e. for each Borel B, $\mathbb{E}(\mu_{n+1}(B)|\mu_n) = \mu_n(B)$.

- Given μ_n, the μ_{n+1}-measure of sets which are far away are independent random variables.

- The expected measure of μ_n is at least a little larger than $n^{3/2} 2^{-n}$.

- With high probability, one can find K^n lines which control all the projections of μ_n, up to some small polynomial error.
Theorem (P.S. and V. Suomala 2011)

We give some abstract conditions on a random measure μ on Ω which guarantee that a.s. there is C (random) such that for every line ℓ, $\|P_\ell \mu\| < C$. Very roughly, the conditions are:

- $\mu = \lim_n \mu_n$, where μ_n is absolutely continuous (μ_n is the (2^{-n})-approximation to μ).
- $\{\mu_n\}$ is a martingale, i.e. for each Borel B, $\mathbb{E}(\mu_{n+1}(B)|\mu_n) = \mu_n(B)$.
- Given μ_n, the μ_{n+1}-measure of sets which are far away are independent random variables.
- The expected measure of μ_n is at least a little larger than $n^3 2^{-n}$.
- With high probability, one can find K^n lines which control all the projections of μ_n, up to some small polynomial error.
Theorem (P.S. and V. Suomala 2011)

We give some abstract conditions on a random measure μ on Ω which guarantee that a.s. there is C (random) such that for every line ℓ,

$$\|P_\ell \mu\| < C.$$

Very roughly, the conditions are:

- $\mu = \lim_n \mu_n$, where μ_n is absolutely continuous (μ_n is the (2^{-n})-approximation to μ).
- $\{\mu_n\}$ is a martingale, i.e. for each Borel B, $E(\mu_{n+1}(B) | \mu_n) = \mu_n(B)$.
- Given μ_n, the μ_{n+1}-measure of sets which are far away are independent random variables.
- The expected measure of μ_n is at least a little larger than $n^3 2^{-n}$.
- With high probability, one can find K^n lines which control all the projections of μ_n, up to some small polynomial error.
Theorem (P.S. and V. Suomala 2011)

We give some abstract conditions on a random measure μ on Ω which guarantee that a.s. there is C (random) such that for every line ℓ, $\|P_\ell \mu\| < C$. Very roughly, the conditions are:

- $\mu = \lim_n \mu_n$, where μ_n is absolutely continuous (μ_n is the (2^{-n})-approximation to μ).
- $\{\mu_n\}$ is a martingale, i.e. for each Borel B, $\mathbb{E}(\mu_{n+1}(B) | \mu_n) = \mu_n(B)$.
- Given μ_n, the μ_{n+1}-measure of sets which are far away are independent random variables.
- The expected measure of μ_n is at least a little larger than $n^3 2^{-n}$.
- With high probability, one can find K^n lines which control all the projections of μ_n, up to some small polynomial error.
The natural measure on fractal percolation is one example of a measure satisfying our conditions, but there are many others. Applying the result to a suitable variant of fractal percolation, we obtain the examples of non-tube null sets mentioned earlier. In some sense, the generality of the result says that non-tube null sets are not really exceptional.
Remarks on main result 1

- The natural measure on fractal percolation is one example of a measure satisfying our conditions, but there are many others.

- Applying the result to a suitable variant of fractal percolation, we obtain the examples of non-tube null sets mentioned earlier. In some sense, the generality of the result says that non-tube null sets are not really exceptional.
Uniform continuity of projections

- We recall that Rams and Peres proved that, other than exceptional directions, projections of the fractal percolation measure are continuous with a Hölder density. It is natural to ask if there are fractal measures all of whose projections are continuous and, in this case, how smooth they can be.

- Somewhat related to this, fractal percolation has undesirable exceptional directions. Since the results we seek are rotation invariant, perhaps random measures with rotational invariance would be more appropriate.

- A Fourier argument shows that if μ is a measure in \mathbb{R}^2 of dimension < 2, then it is not possible for all projections to be uniformly Lipschitz. So the best we can expect is Hölder continuity.
We recall that Rams and Peres proved that, other than exceptional directions, projections of the fractal percolation measure are continuous with a Hölder density. It is natural to ask if there are fractal measures **all** of whose projections are continuous and, in this case, how smooth they can be.

Somewhat related to this, fractal percolation has undesirable exceptional directions. Since the results we seek are rotation invariant, perhaps random measures with rotational invariance would be more appropriate.

A Fourier argument shows that if μ is a measure in \mathbb{R}^2 of dimension < 2, then it is not possible for all projections to be uniformly Lipschitz. So the best we can expect is Hölder continuity.
Uniform continuity of projections

- We recall that Rams and Peres proved that, other than exceptional directions, projections of the fractal percolation measure are continuous with a Hölder density. It is natural to ask if there are fractal measures all of whose projections are continuous and, in this case, how smooth they can be.

- Somewhat related to this, fractal percolation has undesirable exceptional directions. Since the results we seek are rotation invariant, perhaps random measures with rotational invariance would be more appropriate.

- A Fourier argument shows that if μ is a measure in \mathbb{R}^2 of dimension < 2, then it is not possible for all projections to be uniformly Lipschitz. So the best we can expect is Hölder continuity.
Theorem (P.S. and V. Suomala 2011)

We give some slightly stronger conditions on a random measure μ on Ω which ensure that there is $\gamma > 0$ (deterministic) such that a.s. there is $C > 0$ (random) such that for all lines ℓ, $P_\ell \mu$ is absolutely continuous, and the density f_ℓ satisfies

$$|f_\ell(x) - f_\ell(y)| \leq C|x - y|^{\gamma}.$$

Remark

There are examples of such measures of any dimension larger than 1 which are purely unrectifiable.
Theorem (P.S. and V. Suomala 2011)

We give some slightly stronger conditions on a random measure μ on Ω which ensure that there is $\gamma > 0$ (deterministic) such that a.s. there is $C > 0$ (random) such that for all lines ℓ, $P_\ell \mu$ is absolutely continuous, and the density f_ℓ satisfies

$$|f_\ell(x) - f_\ell(y)| \leq C|x - y|^\gamma.$$

Remark

There are examples of such measures of any dimension larger than 1 which are purely unrectifiable.
A Poissonian cutout set
A class of examples: Poissonian cutout measures

- Write \mathcal{X} = compact subsets of \mathbb{R}^2, with Hausdorff metric.
- Let Q be a measure on \mathcal{X} which is translation invariant, scale invariant and locally finite (this means that the measure of all subsets of $[-1,1]^2$ with diameter >1 is finite).
- Let $\mathcal{Y} = \{\Lambda_j\}$ be a Poisson point process with intensity Q. This means \mathcal{Y} is a random countable collection of compact sets such that if $\{X_i\}$ are pairwise disjoint subsets of \mathcal{X}, then the random variables $\#(\mathcal{Y} \cap X_i)$ are independent Poisson distributed with mean $Q(X_i)$.
- The object of interest is the cutout set $E = \Omega \setminus \bigcup_i \Lambda_i$, and the natural measure μ supported on it.
A class of examples: Poissonian cutout measures

- Write \mathcal{X} = compact subsets of \mathbb{R}^2, with Hausdorff metric.
- Let Q be a measure on \mathcal{X} which is translation invariant, scale invariant and locally finite (this means that the measure of all subsets of $[-1, 1]^2$ with diameter > 1 is finite).
- Let $\mathcal{Y} = \{\Lambda_j\}$ be a Poisson point process with intensity Q. This means \mathcal{Y} is a random countable collection of compact sets such that if $\{\mathcal{X}_i\}$ are pairwise disjoint subsets of \mathcal{X}, then the random variables $\#(\mathcal{Y} \cap \mathcal{X}_i)$ are independent Poisson distributed with mean $Q(\mathcal{X}_i)$.
- The object of interest is the cutout set $E = \Omega \setminus \bigcup_i \Lambda_i$, and the natural measure μ supported on it.
A class of examples: Poissonian cutout measures

- Write $\mathcal{X} =$ compact subsets of \mathbb{R}^2, with Hausdorff metric.
- Let Q be a measure on \mathcal{X} which is translation invariant, scale invariant and locally finite (this means that the measure of all subsets of $[-1, 1]^2$ with diameter > 1 is finite).
- Let $\mathcal{Y} = \{\Lambda_j\}$ be a Poisson point process with intensity Q. This means \mathcal{Y} is a random countable collection of compact sets such that if $\{\mathcal{X}_i\}$ are pairwise disjoint subsets of \mathcal{X}, then the random variables $\#(\mathcal{Y} \cap \mathcal{X}_i)$ are independent Poisson distributed with mean $Q(\mathcal{X}_i)$.
- The object of interest is the cutout set $E = \Omega \setminus \bigcup_i \Lambda_i$, and the natural measure μ supported on it.
A class of examples: Poissonian cutout measures

- Write $\mathcal{X} =$compact subsets of \mathbb{R}^2, with Hausdorff metric.
- Let Q be a measure on \mathcal{X} which is translation invariant, scale invariant and locally finite (this means that the measure of all subsets of $[-1, 1]^2$ with diameter > 1 is finite).
- Let $\mathcal{Y} = \{\Lambda_j\}$ be a Poisson point process with intensity Q. This means \mathcal{Y} is a random countable collection of compact sets such that if $\{X_i\}$ are pairwise disjoint subsets of \mathcal{X}, then the random variables $\#(\mathcal{Y} \cap X_i)$ are independent Poisson distributed with mean $Q(X_i)$.
- The object of interest is the cutout set $E = \Omega \setminus \bigcup_i \Lambda_i$, and the natural measure μ supported on it.
Theorem (P.S. and V. Suomala 2011)

Suppose Q is as above, and in addition:

\[\int \frac{\mathcal{L}(\Lambda)}{\text{diam}(\Lambda)^2} dQ(\Lambda) < 2. \]

- For Q-a.e. Λ, the function $\ell \rightarrow \mathcal{H}^1(\ell \cap \Lambda)$ is Hölder continuous.

Then μ satisfies the conditions of our general result II, so all projections of μ are Hölder continuous.
Theorem (P.S. and V. Suomala 2011)

Suppose \(Q \) is as above, and in addition:

\[
\int \frac{\mathcal{L}(\Lambda)}{\text{diam}(\Lambda)^2} dQ(\Lambda) < 2.
\]

For \(Q \)-a.e. \(\Lambda \), the function \(\ell \to \mathcal{H}^1(\ell \cap \Lambda) \) is Hölder continuous.

Then \(\mu \) satisfies the conditions of our general result II, so all projections of \(\mu \) are Hölder continuous.
Theorem (P.S. and V. Suomala 2011)

Suppose Q is as above, and in addition:

1. \[
\int \frac{\mathcal{L}(\Lambda)}{\text{diam}(\Lambda)^2} dQ(\Lambda) < 2.
\]

2. For Q-a.e. Λ, the function $\ell \to \mathcal{H}^1(\ell \cap \Lambda)$ is Hölder continuous.

Then μ satisfies the conditions of our general result II, so all projections of μ are Hölder continuous.
Theorem (P.S. and V. Suomala 2011)

Suppose Q is as above, and in addition:

- \[\int \frac{\mathcal{L}(\Lambda)}{\text{diam}(\Lambda)^2} dQ(\Lambda) < 2. \]

- For Q-a.e. Λ, the function $\ell \rightarrow \mathcal{H}^1(\ell \cap \Lambda)$ is Hölder continuous.

Then μ satisfies the conditions of our general result II, so all projections of μ are Hölder continuous.
Theorem (P.S. and V. Suomala 2011)

Suppose Q is as above, and in addition:

1.
 $$\int \frac{\mathcal{L}(\Lambda)}{\text{diam}(\Lambda)^2} dQ(\Lambda) < 2.$$

2. For Q-a.e. Λ, the function $\ell \to \mathcal{H}^1(\ell \cap \Lambda)$ is Hölder continuous.

Then μ satisfies the conditions of our general result II, so all projections of μ are Hölder continuous.
Remarks on Poissonian cutout measures

By considering the family \(\{ tQ : t > 0 \} \) we can achieve all possible dimensions of the measure.

Start with either a disk or a Von Koch snowflake. Translate it randomly (according to Lebesgue) and scale it randomly (with density \(t^{-1} dt \)). The resulting distribution \(Q \) satisfies the Hölder condition.
By considering the family \(\{tQ : t > 0\} \) we can achieve all possible dimensions of the measure.

Start with either a disk or a Von Koch snowflake. Translate it randomly (according to Lebesgue) and scale it randomly (with density \(t^{-1} dt \)). The resulting distribution \(Q \) satisfies the Hölder condition.
What is the sharp condition on a gauge function h such that $\mathcal{H}^h(E) < \infty \Rightarrow E$ is tube-null? We have seen that $h(t) = t$ has this property and $h(t) = t|\log t|^{-(3+\delta)}$ does not.

Let $s \in [1, 2)$. What is the supremum of all γ such that there exists a measure of dimension s (in some sense) in \mathbb{R}^2, all of whose orthogonal projections are uniformly γ-Lipschitz? (upper bound: $s/2$, lower bound: still trying to improve our exponents).

Merci beaucoup de votre attention!
Open questions and thanks

- What is the sharp condition on a gauge function h such that $\mathcal{H}^h(E) < \infty \Rightarrow E$ is tube-null? We have seen that $h(t) = t$ has this property and $h(t) = t|\log t|^{-\frac{3}{2}}$ does not.

- Let $s \in [1, 2)$. What is the supremum of all γ such that there exists a measure of dimension s (in some sense) in \mathbb{R}^2, all of whose orthogonal projections are uniformly γ-Lipschitz? (upper bound: $s/2$, lower bound: still trying to improve our exponents).

- Merci beaucoup de votre attention!
Open questions and thanks

- What is the sharp condition on a gauge function h such that $\mathcal{H}^h(E) < \infty \Rightarrow E$ is tube-null? We have seen that $h(t) = t$ has this property and $h(t) = t|\log t|^{-(3+\delta)}$ does not.

- Let $s \in [1, 2)$. What is the supremum of all γ such that there exists a measure of dimension s (in some sense) in \mathbb{R}^2, all of whose orthogonal projections are uniformly γ-Lipschitz? (upper bound: $s/2$, lower bound: still trying to improve our exponents).

- Merci beaucoup de votre attention!