β matrix models in the multi cut regime

M.Shcherbina

Institute for Low Temperature Physics, Kharkov, Ukraine

Paris

Model definition

Distributions in \mathbb{R}^n , depending on the function V and $\beta > 0$

$$p_{n,\beta}(\lambda_1,...,\lambda_n) = Z_{n,\beta}^{-1}[V]e^{\beta H(\lambda_1,...,\lambda_n)/2},$$

where H (Hamiltonian) and $Z_{n,\beta}[V]$ (partition function) are

$$\begin{split} H(\lambda_1,\ldots,\lambda_n) &= -n \sum_{i=1}^n V(\lambda_i) + \sum_{i\neq j} \log |\lambda_i - \lambda_j|, \\ Z_{n,\beta}[V] &= \int e^{\beta H(\lambda_1,\ldots,\lambda_n)/2} d\lambda_1 \ldots d\lambda_n, \quad V(\lambda) > (1+\varepsilon) \log(1+\lambda^2). \end{split}$$

For $\beta = 1, 2, 4$ it is a joint eigenvalues distribution of real symmetric, hermitian and symplectic matrix models respectively.

Marginal densities (correlation functions)

$$p_l^{(n)}(\lambda_1,...,\lambda_l) = \int_{\mathbb{R}^{n-l}} p_{n,\beta}(\lambda_1,...\lambda_l,\lambda_{l+1},...,\lambda_n) d\lambda_{l+1}...d\lambda_n$$

Linear eigenvalue statistics and characteristic functional

Linear eigenvalue statistics (LES) of the test function h and NCM

$$\mathcal{N}_n[h] = \sum_{i=1}^n h(\lambda_i), \quad N_n[\Delta] = \sharp \{\lambda_i \in \Delta\}/n$$

The moments of LES can be written in terms of correlation functions. In particular,

$$E\{\mathcal{N}_n[h]\} = n \int h(\lambda) p_1^{(n)}(\lambda) d\lambda$$

and $\operatorname{Var}_n\{\mathcal{N}_n[h]\}\$ can be expressed in terms of $p_2^{(n)}(\lambda_1,\lambda_2)$ and $p_1^{(n)}(\lambda_1)$.

Characteristic functional

$$\begin{split} \widetilde{Z}_{n,\beta}[h] = & E_{\beta,n} \Big\{ e^{\beta(\mathcal{N}_n[h] - E\{\mathcal{N}_n[h]\})/2} \Big\} \\ = & Z_{n,\beta}[V - \frac{1}{n}(h - E\{\mathcal{N}_n[h]\})]/Z_{n,\beta}[V], \end{split}$$

First step for β matrix models

Theorem [Boutet de Monvel, Pastur, S:95; Johansson:98]

If V is a Hölder function, then

$$\log Z_{n,\beta}[V] = \frac{n^2\beta}{2}\mathcal{E}[V] + O(n\log n),$$

where
$$\mathcal{E}[V] = -\min_{m \in \mathcal{M}_1} \left\{ L[dm, dm] + \int V(\lambda) m(d\lambda) \right\} = \mathcal{E}_V(m^*),$$

$$L[dm, dm'] = \int \log |\lambda - \mu|^{-1} dm(\lambda) dm'(\mu),$$

 $m^*(d\lambda) = \rho(\lambda)d\lambda$ (called the equilibrium measure) has a compact support $\sigma := \text{supp } m^*$.

Moreover, if $h' \in L_2[\sigma_{\varepsilon}]$

$$|n^{-1} E\{\mathcal{N}_n[h]\} - (h,m^*)| \leq C n^{-1/2} \log^{1/2} n ||h'||_2^{1/2} ||h||_2^{1/2}$$

←□ → ←□ → ← = → ← = → へへ

Motivation to study $\log Z_{n,\beta}[V]$: universality for $\beta = 1,4$

Result of Widom:99

For polynomial V of degree 2m there is $(2m-1) \times (2m-1)$ matrix T_n (it can be constructed directly) such that if $\log \det T_n > -C$ uniformly in n, then the Dyson universality conjecture is true for $\beta = 1, 4$

- $V = \lambda^4/4 + a\lambda^2/2$ [Stojanovich:02],
- $V = \lambda^{2m}$ [Deift,Gioev:07,07a],
- V-real analytic with one interval equilibrium density [S:09,09a].

Motivation to study $\log Z_{n,\beta}[V]$: universality for $\beta = 1,4$

Result of Widom:99

For polynomial V of degree 2m there is $(2m-1) \times (2m-1)$ matrix T_n (it can be constructed directly) such that if $\log \det T_n > -C$ uniformly in n, then the Dyson universality conjecture is true for $\beta = 1, 4$

- $V = \lambda^4/4 + a\lambda^2/2$ [Stojanovich:02],
- $V = \lambda^{2m}$ [Deift,Gioev:07,07a],
- V-real analytic with one interval equilibrium density [S:09,09a].

Observation of Stojanovich [St:02]

$$\det(T_n) = \left(\frac{Z_{n,1}[V]Z_{n/2,4}[V]}{Z_{n,2}[V](n/2)!2^n}\right)^2$$

Hence to control $\det(T_n)$, it suffices to control $\log(Z_{n,\beta}/n!)$ for $\beta = 1, 2, 4$ up to O(1) terms.

Results for one cut potentials

Theorem [Johansson:98] CLT for LES in the one cut case

V is polynomial, $\sigma = [a, b]$, and ρ is "generic". Then for any $h : \mathbb{R} \to \mathbb{R}$ with $||h^{(4)}||_{\infty}, ||h'||_{\infty} \leq \log n$

$$\widetilde{Z}_{n,\beta}[h] = \exp\Big\{\frac{\beta}{2}\Big(\big(\frac{2}{\beta}-1\big)(h,\nu) + \frac{1}{4}(\overline{D}_{\sigma}h,h)\Big)\Big\}\Big(1 + n^{-1}O\big(||h^{(4)}||_{\infty}^{3}\big)\Big)$$

where the "variance operator" $\overline{\mathrm{D}}_{\sigma}$ and the measure ν have the form

$$(\overline{D}_{\sigma}h, h) = \int_{\sigma} \frac{h(\lambda)d\lambda}{\pi^{2}X^{1/2}(\lambda)} \int_{\sigma} \frac{h'(\mu)X^{1/2}(\mu)d\mu}{\lambda - \mu}, X_{\sigma}(\lambda) = (b - \lambda)(\lambda - a)$$
$$(\nu, h) := \frac{1}{4}(h(b) + h(a)) - \frac{1}{2\pi} \int_{\sigma} \frac{h(\lambda)d\lambda}{X^{1/2}(\lambda)} + \frac{1}{2}(D_{\sigma}\log P, h)$$

Remark

 D_{σ} is "almost" $\mathcal{L}_{\sigma}^{-1}$, where \mathcal{L}_{σ} is the integral operator defined by the kernel $\log |\lambda - \mu|^{-1}$ for the interval σ

Theorem [Kriecherbauer, S:10]

• For h = 0

$$\begin{split} \log(Z_{n,\beta}/n!) = & \frac{\beta n^2}{2} \mathcal{E}[V] + F_{\beta}(n) + n \left(\frac{\beta}{2} - 1\right) \left((\log \rho, \rho) - 1 - \log 2\pi\right) \\ & + r_{\beta}[\rho] + O(n^{-1}), \end{split}$$

where $F_{\beta}(n)$ corresponds to the linear, logarithmic and zero order terms of the expansion in n of $\log Z_{n,\beta}[V^*]$ for $V^*(\lambda) = \lambda^2/2$:

$$F_{\beta}(n) = n\left(\frac{\beta}{2} - 1\right)\left(\log\frac{n\beta}{2} - \frac{1}{2}\right) + n\log\frac{\sqrt{2\pi}}{\Gamma(\beta/2)} - c_{\beta}\log n + c_{\beta}^{(1)},$$

where $c_{\beta} = \frac{\beta}{24} - \frac{1}{4} + \frac{1}{6\beta}$ and $c_{\beta}^{(1)}$ is some depending only on β constant (for $\beta = 2$, $c_{\beta}^{(1)} = \zeta'(1)$)

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 釣९○

Other results for one cut potentials:

- [Albeverio, Pastur, S:01] expansion of the first and the second correlators for one-cut real analytic V and $\beta = 2$;
- [Ercolani, McLaughlin:03] expansion of $\log Z_{n,\beta}[V]$ for polynomial one-cut V and $\beta = 2$;
- **3** [Borot, Guionnet:11] expansion of all correlators and $\log Z_{n,\beta}[V]$ for one-cut real analytic V and any β .

CLT and expansions for multi - cut case. Results.

- [Chekhov, Eynard: 06, Eynard: 09] formal expansions for multi-cut V and any β ;
- ② [Pastur:07] derivation of CLT from OP-asymptotics of [Deift at al:99] for real analytic h and $\beta = 2$;

Idea from the mean field theory of statistical mechanics

Consider the Hamiltonian

$$H_n(\bar{\sigma}) = H_n^*(\bar{\lambda}) + \frac{1}{2} \Big(\sum_j \varphi(\lambda_j) \Big)^2,$$

where H_n^* is the Hamiltonian for which we are able to find the $\log Z_n^*(u)$ up to the order $O(n^{-k})$

$$f_n^*(u) = \beta^{-1} \log Z_n^*(u) = \beta^{-1} (\log Z_n^*(0) + d\frac{u^2}{2} + \sum d_k(u)n^{-k})$$

where

$$Z_n^*[u] := \int d\bar{\lambda} e^{\beta(H_n(\bar{\lambda}) + nv \sum \varphi(\lambda_i) + u \sum (\varphi(\lambda_i) - \langle \varphi \rangle))}.$$

We would like to find the partition function of H_n :

$$Z_n = \int d\bar{\lambda} e^{\beta H_n(\bar{\lambda})}$$

(ロ) (回) (目) (目) (目) (O)

• Introduce the "approximate" Hamiltonian

$$H_n^{(a)}(\bar{\lambda}) = H_n^*(\bar{\lambda}) + nv \sum_j \varphi(\lambda_i) - n^2 \frac{v^2}{2}, \quad v = \langle \varphi \rangle_{H_n}$$

$$H_{\mathrm{n}} = H_{\mathrm{n}}^{\mathrm{(a)}}(\bar{\lambda}) + \frac{1}{2} \sum_{\mathrm{i},\mathrm{i}} (\varphi(\lambda_{\mathrm{i}}) - \langle \varphi \rangle_{\mathrm{H}_{\mathrm{n}}}) (\varphi(\lambda_{\mathrm{j}}) - \langle \varphi \rangle_{\mathrm{H}_{\mathrm{n}}})$$

• Use the Hubbard-Stratonovich transformation

$$Z_n = \sqrt{\frac{\beta}{2\pi}} \int d\bar{\lambda} \int du e^{\beta H_n^{(a)}(\bar{\lambda}) + u\beta \sum_j (\phi(\lambda_i) - \langle \phi \rangle_{H_n}) - \beta u^2/2}$$

• Take the integral with respect to $\bar{\lambda}$ first. We obtain

$$Z_n = \int du e^{\beta f_n^*(u) - \beta u^2/2}$$

• Expand $f_n^*(u)$ in the series with respect to n^{-1} and live at the exponent only O(1) quadratic term. Taking the integrals with respect to u we obtain the expansion for Z_n .

Assumptions and the restriction of the integration domain

Assumptions

• V is real analytic,

$$\sigma = \bigcup_{\alpha=1}^{q} \sigma_{\alpha}, \quad \mu_{\alpha} = \int_{\sigma_{\alpha}} \rho_{\alpha}(\lambda) d\lambda, \quad \rho_{\alpha} := 1_{\sigma_{\alpha}} \rho.$$

2 V is of generic behavior.

Replace the integration domain in the definition of $Z_{n,\beta}[V]$ from \mathbb{R} to σ_{ε} , where

$$\sigma_{\varepsilon} = \bigcup_{\alpha=1}^{q} \sigma_{\alpha,\varepsilon}, \quad \sigma_{\alpha,\varepsilon} \cap \sigma_{\alpha+1,\varepsilon} = \emptyset$$

Then, according to the result of [Pastur,S:07], $Z_{n,\beta}[V]$ will be changed by $(1 + O(e^{-nc}))$ factor.

- ◆ロト ◆御 ト ◆注 ト (注) から(で

Construction of the "approximate" Hamiltonian

Below we will use the notation

$$\chi_{\alpha}(\lambda) = 1_{\sigma_{\alpha,\varepsilon}}(\lambda),$$

Then for our domain $1 = \sum_{\alpha} \chi_{\alpha}(\lambda)$ and we can write $H(\lambda)$ as

$$\begin{split} H(\overline{\lambda}) &= -n \sum_{i=1}^{n} V(\lambda_{i}) + \sum_{i \neq j, \alpha, \alpha' = 1}^{q} \chi_{\alpha}(\lambda_{i}) \chi_{\alpha'}(\lambda_{j}) \log |\lambda_{i} - \lambda_{j}| \\ &= -n \sum_{i=1}^{n} V(\lambda_{i}) + \sum_{i \neq j} \sum_{\alpha = 1}^{q} \chi_{\alpha}(\lambda_{i}) \chi_{\alpha}(\lambda_{j}) \log |\lambda_{i} - \lambda_{j}| \\ &+ \sum_{\substack{i,j=1 \\ \alpha \neq \alpha'}}^{n} \int \log |\lambda - \mu| \chi_{\alpha}(\lambda) \chi_{\alpha'}(\mu) \delta_{\lambda_{i}}(\lambda) \delta_{\lambda_{j}}(\mu) d\lambda d\mu = H^{*} \end{split}$$

Then write under the integral sign

$$\delta_{\lambda_i}(\lambda) = \delta_{\lambda_i}(\lambda) - \langle \delta_{\lambda_i}(\lambda) \rangle + \langle \delta_{\lambda_i}(\lambda) \rangle = \Delta_i(\lambda) + \langle \underline{\delta_{\lambda_i}(\lambda)} \rangle$$

Construction of the "approximate" Hamiltonian

$$\begin{split} H(\overline{\lambda}) = & H^*(\overline{\lambda}) + 2n \sum_{j=1}^n V_{\alpha}^{(a)}(\lambda_i) - n^2 \Sigma^* \\ & + \sum_{\substack{i,j=1\\ \alpha \neq \alpha'}}^n \int \log|\lambda - \mu| \chi_{\alpha}(\lambda) \chi_{\alpha'}(\mu) \Delta_i(\lambda) \Delta_j(\mu) \mathrm{d}\lambda \mathrm{d}\mu \\ = & H_a(\overline{\lambda}) + \Delta H(\overline{\lambda}), \end{split}$$

where, taking into account that $\langle \delta_{\lambda_i}(\lambda) \rangle = \rho(\lambda)$, we obtain that the "effective potentials" $V_{\alpha}^{(a)}$ and Σ^* have the form

$$V_{\alpha}^{(a)}(\lambda) = \chi_{\alpha}(\lambda) \sum_{\alpha' \neq \alpha} \int \log|\lambda - \mu| \chi_{\alpha'}(\mu) \rho(\mu) d\mu$$
$$\Sigma^* := \sum_{\alpha \neq \alpha'} \int_{\sigma_{\alpha}} d\lambda \int_{\sigma_{\alpha'}} d\mu \log|\lambda - \mu| \rho(\lambda) \rho(\mu)$$

←□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

It is easy to see that

$$Z_{n,\beta}[V]/n! = \sum_{|\overline{n}|=n} \frac{\int 1_{\overline{n}}(\overline{\lambda}) e^{\beta H(\overline{\lambda})/2}}{n_1! \dots n_q!} = \sum_{|\overline{n}|=n} \frac{\int 1_{\overline{n}}(\overline{\lambda}) e^{\beta (H_a(\overline{\lambda}) + \Delta H(\overline{\lambda}))/2}}{n_1! \dots n_q!}$$

where $\overline{n} := (n_1, \dots, n_q), |\overline{n}| := \sum_{\alpha=1}^q n_\alpha$, and $1_{\overline{n}}(\overline{\lambda})$ is the indicator of the configurations of $\lambda_1, \dots, \lambda_n$, such that

 $\begin{array}{l} \lambda_1,\ldots,\lambda_{n_1}\in\sigma_{1,\varepsilon},\,\lambda_{n_1+1},\ldots,\lambda_{n_1+n_2}\in\sigma_{2,\varepsilon},\ldots\,\,\lambda_{n-n_q+1},\ldots,\lambda_q\in\sigma_{q,\varepsilon}\\ \mathrm{Choose}\,\,\mathrm{M}=[\log^2 n]\,\,\mathrm{and}\,\,\mathrm{represent}\,\,\Delta\mathrm{H}(\overline{\lambda})\mathbf{1}_{\overline{n}}(\overline{\lambda})\,\,\mathrm{as} \end{array}$

$$\begin{split} &\mathbf{1}_{\overline{n}}(\overline{\lambda}) \sum_{\substack{j,j'=1\\\alpha \neq \alpha'}}^{n} \sum_{k,m=1}^{M} L_{k,m}^{(\alpha,\alpha')} \Big(p_k^{(\alpha)}(\lambda_j) - \frac{n}{n_\alpha} c_k^{(\alpha)} \Big) \Big(p_m^{(\alpha')}(\lambda_{j'}) - \frac{n}{n_{\alpha'}} c_k^{(\alpha)} \Big) \\ &+ O(e^{-c \log^2 n}), \quad c_k^{(\alpha)} := (p_k^{(\alpha)}, \rho \mathbf{1}_{\sigma_\alpha}) \end{split}$$

where $L_{k,m}^{(\alpha,\alpha')}$ are the Fourier coefficient of the function

$$\log |\lambda - \mu| \chi_{\alpha}(\lambda) \chi_{\alpha'}(\mu)$$
 with respect to the basis $\{p_k^{(\alpha)}(\lambda) p_m^{(\alpha')}(\mu)\}$

Main steps of the proof

- For each $\bar{\mathbf{n}}$ we linearize $\Delta \mathbf{H}(\overline{\lambda})\mathbf{1}_{\overline{\mathbf{n}}}(\overline{\lambda})$, using the Hubbard-Stratonovich transformation. This adds to $\mathbf{H}^{(a)}(\overline{\lambda})\mathbf{1}_{\overline{\mathbf{n}}}(\overline{\lambda})$ the additional potential $\mathbf{h}_{\alpha}[\bar{\mathbf{u}}]$, depending on the integration parameters $\bar{\mathbf{u}}$. Then for each σ_{α} we are in the situation of Theorem 3.
- Apply Theorems 2,3 to find $Z_{n_{\alpha},\beta}[V+2V_{\alpha}^{(a)}+\frac{1}{n}h_{\alpha}[\bar{u}]]$. We obtain the quadratic form of \bar{u} in the exponent.
- Integrate with respect to $\bar{\mathbf{u}}$. We obtain the expansion for the initial partition function.

Important definitions

$$X_{\sigma}(\lambda) = \prod_{\alpha=1}^{q} (b_{\alpha} - \lambda)(\lambda - a_{\alpha})$$

Definition of Q

$$Q = \{Q_{\alpha\alpha'}\}_{\alpha,\alpha'=1}^{q}, \quad Q_{\alpha\alpha'} = (\mathcal{L}\psi^{(\alpha)}, \psi^{(\alpha')}),$$

where $\psi^{(\alpha)}(\lambda) = p_{\alpha}(\lambda)X^{-1/2}(\lambda)1_{\sigma}$ (p_{α} is a polynomial of degree q-1) is a unique solution of the system of equations

$$(\mathcal{L}\psi^{(\alpha)})_{\alpha'} = \delta_{\alpha\alpha'}, \quad \alpha' = 1, \dots, q.$$

(harmonic measure of σ_{α} with respect to $\mathbb{C} \setminus \sigma$)

Definition of I[h]

$$I[h] = (I_1[h], \dots, I_q[h]), \quad I_{\alpha}[h] := \sum_{\alpha'} \mathcal{Q}_{\alpha\alpha'}^{-1}(h, \psi^{(\alpha')}).$$

Main results

Theorem 3 [S:12]

Let the potential V satisfy conditions C1-C2. Then

$$\begin{split} \widetilde{Z}_{n,\beta}[h] = & e^{\frac{\beta}{8}(\mathcal{D}h,h) + \left(\frac{\beta}{2} - 1\right)(\mathcal{G}\nu,h)} \frac{\Theta(\overline{I}[h];\{n\overline{\mu}\})}{\Theta(0;\{n\overline{\mu}\})} \\ & \times \left(1 + O\left(n^{-\kappa}(||h'||_{\infty}||h^{(6)}||_{\infty}^{2})\right)\right), \end{split}$$

where the operators \mathcal{D} , \mathcal{G} , $\widetilde{\mathcal{L}}$ are defined in terms of \mathcal{L} and $\oplus D_{\sigma_{\alpha}}$

$$\begin{split} \Theta(I[h]; \{n\bar{\mu}\}) := \sum_{n_1 + \dots + n_q = n_0} \exp\Big\{ -\frac{\beta}{2} \Big(\mathcal{Q}^{-1} \Delta \bar{n}, \Delta \bar{n} \Big) + \frac{\beta}{2} (\Delta \bar{n}, I[h]) \\ + \Big(\frac{\beta}{2} - 1 \Big) (\Delta \bar{n}, I[\log \overline{\rho}]) \Big\}, \end{split}$$

$$\{n\bar{\mu}\} = (\{n\mu_1\}, \dots, \{n\mu_q\}), \ (\Delta\bar{n})_{\alpha} = n_{\alpha} - \{n\mu_{\alpha}\}, \ n_0 = \sum^q \{n\mu_{\alpha}\},$$

 \bullet for h = 0 we have

$$\begin{split} Z_{n,\beta}[V] = & \mathcal{S}_{n,\beta}[V] \frac{\exp\left\{\frac{2}{\beta}\left(\frac{\beta}{2}-1\right)^2(\widetilde{\mathcal{L}}\mathcal{G}\nu,\nu)\right\}}{\det^{1/2}(1-\overline{D}\widetilde{\mathcal{L}})} \Theta(0;\{n\bar{\mu}\})(1+O(n^{-\kappa})), \\ \mathcal{S}_{n,\beta}[V] = & \exp\left\{\frac{n^2\beta}{2}\mathcal{E}[V] + F_{\beta}(n) + n(\frac{\beta}{2}-1)\big((\log\rho,\rho) - 1 - \log 2\pi\big) - c_{\beta}(q-1)\log n + \sum_{\alpha=1}^{q}(r_{\beta}[\mu_{\alpha}^{-1}\rho_{\alpha}] - c_{\beta}\log\mu_{\alpha})\right\}, \end{split}$$

Theorem 4 [S:in prep]

Under the conditions C1-C2 $Q_{n,\beta}[V]$ admits the asymptotic expansion in n^{-j} with quasi-periodic in n coefficients $q_{\beta,j}[n]$:

$$Z_{n,\beta}[V] = \mathcal{S}_{n,\beta}[V] \frac{\exp\left\{\frac{2}{\beta}\left(\frac{\beta}{2}-1\right)^2\left(\widetilde{\mathcal{L}}\mathcal{G}\nu,\nu\right)\right\}}{\det^{1/2}(1-\overline{D}\widetilde{\mathcal{L}})} \Theta(0;\{n\bar{\mu}\}) \sum_{j=1} n^{-j}q_{\beta,j}[n],$$

Corollaries

Corollary 1

Theorem 3 yields that the fluctuations of $\mathcal{N}_n[h]$ for generic h are non Gaussian. They are Gaussian, if there exists some c such that

$$I_{\alpha}[h] = c, \quad \alpha = 1, \dots, q; \quad \Leftrightarrow \quad (h - c, \psi^{(\alpha)}) = 0, \quad \alpha = 1, \dots, q.$$

Remark 1

The operator \mathcal{D} , which appears in the place of the "variance operator" in the multi-cut case, differs from \mathcal{L}^{-1} only by the finite rank perturbation. This perturbation provides, in particular, that $\mathcal{D}f = 0$, if $f(\lambda) = \text{const}$, $\lambda \in \sigma$

$$(\mathcal{D}h, h) = \frac{1}{\pi^2} \int_{\sigma} \frac{h(\lambda) d\lambda}{X^{-1/2}(\lambda)} \int_{\sigma} \frac{h'(\mu) X^{1/2}(\mu) d\mu}{(\lambda - \mu)} - ?$$

Corollaries of Theorem 3 for the moments of $\mathcal{N}_n[h]$

Expectation of $\mathcal{N}_n[h]$

For any β in the multi cut case we obtain $O(n^{-1})$ correction to $E_{\beta,n}\{n^{-1}\mathcal{N}_n[h]\}$:

$$E_{\beta,n}\{n^{-1}\mathcal{N}_n[h]\} - (h,\rho) = \frac{1}{n} \left[\left(\frac{\beta}{2} - 1 \right) (\mathcal{G}\nu,h) + \sum_{\alpha=1}^q I_{\alpha}[h] c_{\alpha}(n) \right] + O\left(\frac{1}{n^{1+\delta}} \right),$$

Variance of $\mathcal{N}_{n}[h]$

$$\operatorname{Var}\{\mathcal{N}_{\mathbf{n}}[\varphi]\} = \frac{\beta}{8}(\mathcal{D}\mathbf{h}, \mathbf{h}) + \sum_{\alpha=1}^{q} d_{\alpha, \alpha'}(\mathbf{n}) I_{\alpha}[\mathbf{h}] I_{\alpha'}[\mathbf{h}]$$

where $c_{\alpha}(n)$ and $d_{\alpha,\alpha'}(n)$ are quasi-periodic functions (derivatives of Θ -function above).

Corollaries from Theorem 3 for the universality of local regimes

- bulk universality for $\beta = 1, 4$;
- 2 edge universality for $\beta = 1, 4$;
- ullet bulk universality for any eta could be reduced to the universality for the one-cut case for $V + n^{-1}h$ with $||h'||_{\infty} \leq \log n$.