Critical Percolation and Fractals

Jeff Steif

Fractals and Related Fields II 13 June 2011

・ロト ・回ト ・ヨト ・ヨト

-2

Percolation on the hexagonal lattice Let each hexagon be black with probability *p*.

Theorem: (Harris, 1960)

If $p \leq 1/2$, then no infinite black component.

Theorem: (Kesten, 1980)

If p > 1/2, then there is an infinite black component.

The critical value is 1/2.

Percolation on the hexagonal lattice Let each hexagon be black with probability *p*.

Theorem: (Harris, 1960)

If $p \leq 1/2$, then no infinite black component.

Theorem: (Kesten, 1980)

If p > 1/2, then there is an infinite black component.

The critical value is 1/2.

・ロト ・回ト ・ヨト ・ヨト

Percolation on the hexagonal lattice Let each hexagon be black with probability *p*.

Theorem: (Harris, 1960)

If $p \leq 1/2$, then no infinite black component.

Theorem: (Kesten, 1980)

If p > 1/2, then there is an infinite black component.

The **critical value** is 1/2.

Percolation on the hexagonal lattice Let each hexagon be black with probability *p*.

Theorem: (Harris, 1960)

If $p \leq 1/2$, then no infinite black component.

Theorem: (Kesten, 1980)

If p > 1/2, then there is an infinite black component.

The **critical value** is 1/2.

イロン イヨン イヨン イヨン

The 1-arm exponent

Let A_R be the event that there is an open path from the origin to **distance** R **away**. **Theorem. (Lawler, Schramm and Werner, 2002):**

For the hexagonal lattice, one has

$$P(A_R) = R^{-5/48+o(1)}$$

as $R \to \infty$.

The 4-arm exponent

Let A_R^4 be the event that there are 4 paths adjacent to the origin to **distance** *R* **away** alternating in color. **Theorem. (Smirnov and Werner, 2001):** For the hexagonal lattice, one has

$$P(A_R^4) = R^{-5/4+o(1)}$$

as $R \to \infty$.

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Tools for computing critical exponents

The above are two of an infinite number of **critical exponents** that one can compute.

These critical exponents were predicted by theoretical physicists.

Conformal invariance (Smirnov) and **Schramm-Lowner Evolution** (Schramm) are the tools used to derive these critical exponents.

Tools for computing critical exponents

The above are two of an infinite number of **critical exponents** that one can compute.

These critical exponents were predicted by theoretical physicists.

Conformal invariance (Smirnov) and **Schramm-Lowner Evolution** (Schramm) are the tools used to derive these critical exponents.

Tools for computing critical exponents

The above are two of an infinite number of **critical exponents** that one can compute.

These critical exponents were predicted by theoretical physicists.

Conformal invariance (Smirnov) and **Schramm-Lowner Evolution** (Schramm) are the tools used to derive these critical exponents.

Four fractals

We will look at 4 fractals associated to the above critical percolation.

1. The set \mathcal{P} of **pivotal** hexagons for percolation crossing events.

2. The spectral sample S for percolation crossing events: Key to the study of **noise sensitivity**. Very related to (but different from!!) the set of **pivotal** hexagons.

- 3. Fractal percolation: a simpler model to keep in mind.
- 4. The set of exceptional times for **dynamical percolation**.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Four fractals

We will look at 4 fractals associated to the above critical percolation.

1. The set \mathcal{P} of **pivotal** hexagons for percolation crossing events.

2. The spectral sample S for percolation crossing events: Key to the study of **noise sensitivity**. Very related to (but different from!!) the set of **pivotal** hexagons.

- 3. Fractal percolation: a simpler model to keep in mind.
- 4. The set of exceptional times for **dynamical percolation**.

イロン イヨン イヨン イヨン

Four fractals

We will look at 4 fractals associated to the above critical percolation.

1. The set \mathcal{P} of **pivotal** hexagons for percolation crossing events.

2. The spectral sample S for percolation crossing events: Key to the study of noise sensitivity. Very related to (but different from!!) the set of pivotal hexagons.

- 3. Fractal percolation: a simpler model to keep in mind.
- 4. The set of exceptional times for dynamical percolation.

Four fractals

We will look at 4 fractals associated to the above critical percolation.

1. The set \mathcal{P} of **pivotal** hexagons for percolation crossing events.

2. The spectral sample S for percolation crossing events: Key to the study of noise sensitivity. Very related to (but different from!!) the set of pivotal hexagons.

3. Fractal percolation: a simpler model to keep in mind.

4. The set of exceptional times for **dynamical percolation**.

Four fractals

We will look at 4 fractals associated to the above critical percolation.

1. The set \mathcal{P} of **pivotal** hexagons for percolation crossing events.

2. The spectral sample S for percolation crossing events: Key to the study of noise sensitivity. Very related to (but different from!!) the set of pivotal hexagons.

- 3. Fractal percolation: a simpler model to keep in mind.
- 4. The set of exceptional times for dynamical percolation.

The percolation crossing event

Through most of the talk, we are interested in the event that there is a **Left-Right crossing** of black hexagons in an $n \times n$ box.

- ∢ ≣ >

Pivotal hexagons and the pivotal set \mathcal{P}

A hexagon is **pivotal** if changing its status changes whether there is a L-R crossing: these are the hexagons which are important on a global scale.

Definition: The **pivotal set** \mathcal{P} is the (random) subset of pivotal hexagons; **this is our first fractal set.**

Pivotal hexagons and the pivotal set \mathcal{P}

A hexagon is **pivotal** if changing its status changes whether there is a L-R crossing: these are the hexagons which are important on a global scale.

Definition: The **pivotal set** \mathcal{P} is the (random) subset of pivotal hexagons; **this is our first fractal set.**

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Pivotal hexagons and the pivotal set \mathcal{P}

A hexagon is **pivotal** if changing its status changes whether there is a L-R crossing: these are the hexagons which are important on a global scale.

Definition: The **pivotal set** \mathcal{P} is the (random) subset of pivotal hexagons; **this is our first fractal set.**

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Influences Definition: The **influence** of a hexagon is the probability that it is pivotal.

Note that this our **four arm event** and so the influence of each hexagon is about $\sim n^{-5/4}$. Hence $E(|\mathcal{P}|) \sim n^{3/4}$.

So, \mathcal{P} should have dimension 3/4.

イロン イヨン イヨン イヨン

Influences Definition: The **influence** of a hexagon is the probability that it is pivotal.

Note that this our **four arm event** and so the influence of each hexagon is about $\sim n^{-5/4}$. Hence $E(|\mathcal{P}|) \sim n^{3/4}$.

So, \mathcal{P} should have dimension 3/4.

イロン イヨン イヨン イヨン

Influences Definition: The **influence** of a hexagon is the probability that it is pivotal.

Note that this our **four arm event** and so the influence of each hexagon is about $\sim n^{-5/4}$. Hence $E(|\mathcal{P}|) \sim n^{3/4}$.

So, \mathcal{P} should have dimension 3/4.

・ロト ・回ト ・ヨト ・ヨト

Influences Definition: The **influence** of a hexagon is the probability that it is pivotal.

Note that this our **four arm event** and so the influence of each hexagon is about $\sim n^{-5/4}$. Hence $E(|\mathcal{P}|) \sim n^{3/4}$.

So, \mathcal{P} should have dimension 3/4.

イロン イヨン イヨン イヨン

Influences Definition: The **influence** of a hexagon is the probability that it is pivotal.

Note that this our **four arm event** and so the influence of each hexagon is about $\sim n^{-5/4}$. Hence $E(|\mathcal{P}|) \sim n^{3/4}$.

So, \mathcal{P} should have dimension 3/4.

イロン イヨン イヨン イヨン

Noise sensitivity for percolation Noise sensitivity was introduced by Benjamini, Kalai and Schramm.

- - 4 回 ト - 4 回 ト

2

Noise sensitivity for percolation: the question

Perform critical percolation on an $n \times n$ box in the hexagonal lattice.

Let E_n be the event that there is a L-R crossing of black hexagons.

Fix $\epsilon > 0$ and **flip/reverse** the status of each hexagon with probability ϵ .

Let E_n^{ϵ} be the event that there is a **L-R crossing** of black hexagons **after** the flipping procedure. (Of course $P(E_n^{\epsilon}) = P(E_n)$).

Question: Are E_n and E_n^{ϵ} highly correlated or very independent?

(Of course, if n is fixed and ϵ is small, they are highly correlated;

Noise sensitivity for percolation: the question

Perform critical percolation on an $n \times n$ box in the hexagonal lattice.

Let E_n be the event that there is a L-R crossing of black hexagons.

Fix $\epsilon > 0$ and **flip/reverse** the status of each hexagon with probability ϵ .

Let E_n^{ϵ} be the event that there is a **L-R crossing** of black hexagons **after** the flipping procedure. (Of course $P(E_n^{\epsilon}) = P(E_n)$).

Question: Are E_n and E_n^{ϵ} highly correlated or very independent?

(Of course, if n is fixed and ϵ is small, they are highly correlated;

Noise sensitivity for percolation: the question

Perform critical percolation on an $n \times n$ box in the hexagonal lattice.

Let E_n be the event that there is a L-R crossing of black hexagons.

Fix $\epsilon > 0$ and **flip/reverse** the status of each hexagon with probability ϵ .

Let E_n^{ϵ} be the event that there is a L-R crossing of black hexagons after the flipping procedure. (Of course $P(E_n^{\epsilon}) = P(E_n)$).

Question: Are E_n and E_n^{ϵ} highly correlated or very independent?

(Of course, if n is fixed and ϵ is small, they are highly correlated;

Noise sensitivity for percolation: the question

Perform critical percolation on an $n \times n$ box in the hexagonal lattice.

Let E_n be the event that there is a L-R crossing of black hexagons.

Fix $\epsilon > 0$ and **flip/reverse** the status of each hexagon with probability ϵ .

Let E_n^{ϵ} be the event that there is a **L-R crossing** of black hexagons **after** the flipping procedure. (Of course $P(E_n^{\epsilon}) = P(E_n)$).

Question: Are E_n and E_n^{ϵ} highly correlated or very independent?

(Of course, if n is fixed and ϵ is small, they are highly correlated;

Noise sensitivity for percolation: the question

Perform critical percolation on an $n \times n$ box in the hexagonal lattice.

Let E_n be the event that there is a L-R crossing of black hexagons.

Fix $\epsilon > 0$ and **flip/reverse** the status of each hexagon with probability ϵ .

Let E_n^{ϵ} be the event that there is a **L-R crossing** of black hexagons **after** the flipping procedure. (Of course $P(E_n^{\epsilon}) = P(E_n)$).

Question: Are E_n and E_n^{ϵ} highly correlated or very independent?

(Of course, if n is fixed and ϵ is small, they are highly correlated;

Noise sensitivity for percolation: the question

Perform critical percolation on an $n \times n$ box in the hexagonal lattice.

Let E_n be the event that there is a L-R crossing of black hexagons.

Fix $\epsilon > 0$ and **flip/reverse** the status of each hexagon with probability ϵ .

Let E_n^{ϵ} be the event that there is a L-R crossing of black hexagons after the flipping procedure. (Of course $P(E_n^{\epsilon}) = P(E_n)$).

Question: Are E_n and E_n^{ϵ} highly correlated or very independent?

(Of course, if n is fixed and ϵ is small, they are highly correlated;

Noise sensitivity for percolation: the question

Perform critical percolation on an $n \times n$ box in the hexagonal lattice.

Let E_n be the event that there is a L-R crossing of black hexagons.

Fix $\epsilon > 0$ and **flip/reverse** the status of each hexagon with probability ϵ .

Let E_n^{ϵ} be the event that there is a L-R crossing of black hexagons after the flipping procedure. (Of course $P(E_n^{\epsilon}) = P(E_n)$). Question: Are E_n and E_n^{ϵ} highly correlated or very independent? (Of course, if *n* is fixed and ϵ is small, they are highly correlated;

Noise sensitivity for percolation: some answers Theorem. (Benjamini, Kalai and Schramm, 1999): For all $\epsilon > 0$,

$$\lim_{n\to\infty}P(E_n\cap E_n^{\epsilon})-P(E_n)^2=0.$$

More quantitative versions

Theorem. (Schramm and S., 2010): If $\epsilon_n = (1/n)^{\gamma}$ with $\gamma < 1/8$, then

$$\lim_{n\to\infty}P(E_n\cap E_n^{\epsilon_n})-P(E_n)^2=0.$$

Theorem. (Garban, Pete and Schramm, 2010): If $\epsilon_n = (1/n)^{\gamma}$ with $\gamma < 3/4$, then

$$\lim_{n\to\infty}P(E_n\cap E_n^{\epsilon_n})-P(E_n)^2=0.$$

For $\gamma > 3/4$ there is full correlation

Critical Percolation and Fractals

Noise sensitivity for percolation: some answers Theorem. (Benjamini, Kalai and Schramm, 1999): For all $\epsilon > 0$,

$$\lim_{n\to\infty}P(E_n\cap E_n^{\epsilon})-P(E_n)^2=0.$$

More quantitative versions

Theorem. (Schramm and S., 2010): If $\epsilon_n = (1/n)^{\gamma}$ with $\gamma < 1/8$, then $\lim_{n \to \infty} P(E_n \cap E_n^{\epsilon_n}) - P(E_n)^2 = 0.$

Theorem. (Garban, Pete and Schramm, 2010): If $\epsilon_n = (1/n)^{\gamma}$ with $\gamma < 3/4$, then

$$\lim_{n\to\infty}P(E_n\cap E_n^{\epsilon_n})-P(E_n)^2=0.$$

For $\gamma > 3/4$ there is full correlation

Critical Percolation and Fractals

向下 イヨト イヨト

Noise sensitivity for percolation: some answers Theorem. (Benjamini, Kalai and Schramm, 1999): For all $\epsilon > 0$,

$$\lim_{n\to\infty}P(E_n\cap E_n^{\epsilon})-P(E_n)^2=0.$$

More quantitative versions

Theorem. (Schramm and S., 2010): If $\epsilon_n = (1/n)^{\gamma}$ with $\gamma < 1/8$, then $\lim_{n \to \infty} P(E_n \cap E_n^{\epsilon_n}) - P(E_n)^2 = 0$

$$\lim_{n\to\infty}P(E_n\cap E_n^{\epsilon_n})-P(E_n)^2=0$$

Theorem. (Garban, Pete and Schramm, 2010): If $\epsilon_n = (1/n)^{\gamma}$ with $\gamma < 3/4$, then

$$\lim_{n\to\infty}P(E_n\cap E_n^{\epsilon_n})-P(E_n)^2=0.$$

For $\gamma > 3/4$ there is full correlation

Critical Percolation and Fractals

Noise sensitivity for percolation: some remarks

- ► A crucial ingredient in **all** three proofs is **Fourier analysis**.
- Benjamini, Kalai and Schramm: exploit hypercontractivity.
- Schramm and S.: develop results in randomized algorithms.
- Garban, Pete and Schramm: view the spectral measure as a random fractal.
Noise sensitivity for percolation: some remarks

- ► A crucial ingredient in **all** three proofs is **Fourier analysis**.
- Benjamini, Kalai and Schramm: exploit hypercontractivity.
- Schramm and S.: develop results in randomized algorithms.
- Garban, Pete and Schramm: view the spectral measure as a random fractal.

イロト イヨト イヨト イヨト

The 3/4 exponent in a nutshell

- Recall that the probability that a hexagon is pivotal is ~ n^{-5/4} and hence the expected number of pivotal hexagons is ~ n^{3/4}.
- ► Therefore \(\epsilon_n = (1/n)^{3/4}\) should be the crossover point when we are likely to reverse a pivotal hexagon which "should" completely mix things up.

But the true story is much more complicated!

The 3/4 exponent in a nutshell

- Recall that the probability that a hexagon is pivotal is ~ n^{-5/4} and hence the expected number of pivotal hexagons is ~ n^{3/4}.
- ► Therefore \(\epsilon_n = (1/n)^{3/4}\) should be the crossover point when we are likely to reverse a pivotal hexagon which "should" completely mix things up.

But the true story is much more complicated!

The 3/4 exponent in a nutshell

- Recall that the probability that a hexagon is pivotal is ~ n^{-5/4} and hence the expected number of pivotal hexagons is ~ n^{3/4}.
- ► Therefore \(\epsilon_n = (1/n)^{3/4}\) should be the crossover point when we are likely to reverse a pivotal hexagon which "should" completely mix things up.

But the true story is much more complicated!

イロト イヨト イヨト イヨト

The Fourier set-up

The set of all functions $f : \{-1, 1\}^n \to R$ is a 2^n dimensional vector space with orthogonal basis $\{\chi_S\}_{S \subseteq \{1,...,n\}}$ where

$$\chi_{\mathcal{S}}(x_1,\ldots,x_n):=\prod_{i\in \mathcal{S}}x_i.$$

We then can write

$$f = \sum_{S \subseteq \{1,...,n\}} \hat{\mathbf{f}}(\mathbf{S}) \chi_S \text{ with } \hat{\mathbf{f}}(\mathbf{S}) = E(f\chi_S).$$

If f maps to $\{\pm 1\}$, then $E(f^2) = 1$ and

$$\sum_{S} \hat{f}^2(S) = 1.$$

イロト イヨト イヨト イヨト

The Fourier set-up

The set of all functions $f : \{-1, 1\}^n \to R$ is a 2^n dimensional vector space with orthogonal basis $\{\chi_S\}_{S \subseteq \{1,...,n\}}$ where

$$\chi_{\mathcal{S}}(x_1,\ldots,x_n):=\prod_{i\in\mathcal{S}}x_i.$$

We then can write

$$f = \sum_{S \subseteq \{1,...,n\}} \hat{\mathbf{f}}(\mathbf{S}) \chi_S \text{ with } \hat{\mathbf{f}}(\mathbf{S}) = E(f\chi_S).$$

If f maps to $\{\pm 1\}$, then $E(f^2) = 1$ and

$$\sum_{S} \hat{f}^2(S) = 1.$$

The Fourier set-up

The set of all functions $f : \{-1, 1\}^n \to R$ is a 2^n dimensional vector space with orthogonal basis $\{\chi_S\}_{S \subseteq \{1,...,n\}}$ where

$$\chi_{\mathcal{S}}(x_1,\ldots,x_n):=\prod_{i\in\mathcal{S}}x_i.$$

We then can write

$$f = \sum_{S \subseteq \{1,...,n\}} \hat{\mathbf{f}}(\mathbf{S}) \chi_S \text{ with } \hat{\mathbf{f}}(\mathbf{S}) = E(f\chi_S).$$

If f maps to $\{\pm 1\}$, then $E(f^2) = 1$ and

$$\sum_{S} \hat{f}^2(S) = 1.$$

The Fourier set-up for percolation

Consider percolation on an $n \times n$ box and let f_n be 1 if there is a L-R black crossing and -1 otherwise.

 f_n is a function of the states of the hexagons; i.e., (if we identify "black" with 1 and "white" with -1)

$$f_n:\{-1,1\}^{H_n}\to\{\pm1\}$$

where H_n is the set of hexagons in the $n \times n$ box.

$$f_n = \sum_{S \subseteq H_n} \hat{\mathbf{f}}_n(\mathbf{S}) \chi_S \text{ with } \hat{\mathbf{f}}_n(\mathbf{S}) = E(f_n \chi_S).$$

Our second fractal: the spectral sample S_f

$$f_n = \sum_{S \subseteq H_n} \hat{\mathbf{f}}_n(\mathbf{S}) \chi_S \text{ with } \hat{\mathbf{f}}_n(\mathbf{S}) = E(f_n \chi_S).$$

Definition: The **spectral sample** for f_n , denoted by S_n , is a random subset of H_n whose distribution is given by

$$P(\mathcal{S}_{\mathbf{n}}=S)=\hat{f}_n^{2}(S).$$

So S_n is a random subset of H_n where the subset S is chosen with probability $\hat{f_n}^2(S)$.

 S_n is our second fractal set.

Our second fractal: the spectral sample S_f

$$f_n = \sum_{S \subseteq H_n} \hat{\mathbf{f}}_n(\mathbf{S}) \chi_S \text{ with } \hat{\mathbf{f}}_n(\mathbf{S}) = E(f_n \chi_S).$$

Definition: The **spectral sample** for f_n , denoted by S_n , is a random subset of H_n whose distribution is given by

$$P(\mathcal{S}_{\mathsf{n}}=S)=\hat{f}_{n}^{2}(S).$$

So S_n is a random subset of H_n where the subset S is chosen with probability $\hat{f_n}^2(S)$.

 S_n is our second fractal set.

Our second fractal: the spectral sample S_f

$$f_n = \sum_{S \subseteq H_n} \hat{\mathbf{f}}_n(\mathbf{S}) \chi_S \text{ with } \hat{\mathbf{f}}_n(\mathbf{S}) = E(f_n \chi_S).$$

Definition: The **spectral sample** for f_n , denoted by S_n , is a random subset of H_n whose distribution is given by

$$P(\mathcal{S}_{\mathbf{n}}=S)=\hat{f}_{n}^{2}(S).$$

So S_n is a random subset of H_n where the subset S is chosen with probability $\hat{f_n}^2(S)$.

 S_n is our second fractal set.

Our second fractal: the spectral sample S_f

$$f_n = \sum_{S \subseteq H_n} \hat{\mathbf{f}}_n(\mathbf{S}) \chi_S \text{ with } \hat{\mathbf{f}}_n(\mathbf{S}) = E(f_n \chi_S).$$

Definition: The **spectral sample** for f_n , denoted by S_n , is a random subset of H_n whose distribution is given by

$$P(\mathcal{S}_{\mathbf{n}}=S)=\hat{f}_n^2(S).$$

So S_n is a random subset of H_n where the subset S is chosen with probability $\hat{f_n}^2(S)$.

 S_n is our second fractal set.

The Fourier picture and noise sensitivity The **key connection** between the Fourier coefficients and noise sensitivity is the following elementary fact.

$$E(f_n(\omega)f_n(\omega^{\epsilon})) = \sum_{S \subseteq H_n} \hat{f}_n(S)^2 (1-2\epsilon)^{|S|}$$
$$= \mathbb{E}[(1-2\epsilon)^{|S_n|}].*$$

Definition: The **energy spectrum**, \mathcal{E}_n , is defined by

$$\mathcal{E}_n(k) := \sum_{|S|=k} \hat{f}_n(S)^2, \quad k = 1, \dots, n^2.$$

$$* = E(f_n)^2 + \sum_{k=1}^{n^2} \mathcal{E}_n(k)(1-2\epsilon)^k.$$

The Fourier picture and noise sensitivity The **key connection** between the Fourier coefficients and noise sensitivity is the following elementary fact.

$$E(f_n(\omega)f_n(\omega^{\epsilon})) = \sum_{S \subseteq H_n} \hat{f}_n(S)^2 (1-2\epsilon)^{|S|}$$
$$= \mathbf{E}[(1-2\epsilon)^{|\mathcal{S}_n|}].*$$

Definition: The **energy spectrum**, \mathcal{E}_n , is defined by

$$\mathcal{E}_n(k) := \sum_{|S|=k} \hat{f}_n(S)^2, \quad k = 1, \dots, n^2.$$

$$* = E(f_n)^2 + \sum_{k=1}^{n^2} \mathcal{E}_n(k)(1-2\epsilon)^k.$$

The Fourier picture and noise sensitivity The **key connection** between the Fourier coefficients and noise sensitivity is the following elementary fact.

$$E(f_n(\omega)f_n(\omega^{\epsilon})) = \sum_{S \subseteq H_n} \hat{f}_n(S)^2 (1-2\epsilon)^{|S|}$$
$$= \mathbf{E}[(1-2\epsilon)^{|\mathcal{S}_n|}].*$$

Definition: The **energy spectrum**, \mathcal{E}_n , is defined by

$$\mathcal{E}_n(k) := \sum_{|S|=k} \hat{f}_n(S)^2, \quad k = 1, \ldots, n^2.$$

$$* = E(f_n)^2 + \sum_{k=1}^{n^2} \mathcal{E}_n(k)(1-2\epsilon)^k.$$

The Fourier picture and noise sensitivity The **key connection** between the Fourier coefficients and noise sensitivity is the following elementary fact.

$$E(f_n(\omega)f_n(\omega^{\epsilon})) = \sum_{S \subseteq H_n} \hat{f}_n(S)^2 (1-2\epsilon)^{|S|}$$
$$= \mathbf{E}[(1-2\epsilon)^{|\mathcal{S}_n|}].*$$

Definition: The **energy spectrum**, \mathcal{E}_n , is defined by

$$\mathcal{E}_n(k) := \sum_{|S|=k} \hat{f}_n(S)^2, \quad k = 1, \ldots, n^2.$$

$$* = E(f_n)^2 + \sum_{k=1}^{n^2} \mathcal{E}_n(k)(1-2\epsilon)^k.$$

• E • • E •

Picture of the spectrum

The spectrum of a general function looks like this.

・ロト ・回ト ・ヨト ・ヨト

The Fourier picture and noise sensitivity: continued

$$E(f_n(\omega)f_n(\omega^{\epsilon})) = \sum_{S \subseteq H_n} \hat{f}_n(S)^2 (1-2\epsilon)^{|S|}$$

$$= E[(1-2\epsilon)^{|\mathcal{S}_n|}] = E(f_n)^2 + \sum_{k=1}^{n^2} \mathcal{E}_n(k)(1-2\epsilon)^k.$$

Conclusion: Noise sensitivity corresponds to \mathcal{E}_f being concentrated on large k.

Proposition (BKS, 1999): $\{f_n\}$ is noise sensitive if and only if for every $k \ge 1$,

$$\lim_{n\to\infty}\sum_{|S|=k}\hat{f}_n(S)^2 = \lim_{n\to\infty}\mathcal{E}_{f_n}(k) = \lim_{n\to\infty}P(|\mathcal{S}_{f_n}|=k) = 0.$$

・ロン ・回と ・ヨン ・ヨン

The Fourier picture and noise sensitivity: continued

$$E(f_n(\omega)f_n(\omega^{\epsilon})) = \sum_{S \subseteq H_n} \hat{f}_n(S)^2 (1-2\epsilon)^{|S|}$$

$$= E[(1-2\epsilon)^{|\mathcal{S}_n|}] = E(f_n)^2 + \sum_{k=1}^{n^2} \mathcal{E}_n(k)(1-2\epsilon)^k.$$

Conclusion: Noise sensitivity corresponds to \mathcal{E}_f being concentrated on large k.

Proposition (BKS, 1999): $\{f_n\}$ is noise sensitive if and only if for every $k \ge 1$,

$$\lim_{n\to\infty}\sum_{|S|=k}\hat{f}_n(S)^2=\lim_{n\to\infty}\mathcal{E}_{f_n}(k)=\lim_{n\to\infty}P(|\mathcal{S}_{f_n}|=k)=0.$$

イロト イヨト イヨト イヨト

Quantitative noise sensitivity

Quantitative noise sensitivity results corresponds to knowing how fast the spectrum goes to ∞ .

$$E(f(\omega)f(\omega^{\epsilon_n})) = E(f_n)^2 + \sum_{k=1}^{n^2} \mathcal{E}_n(k)(1-2\epsilon_n)^k.$$

Being sensitive to $(1/n)^{\sigma}$ is equivalent to vanishingly small spectrum below n^{σ} (i.e., $\lim_{n\to\infty} \sum_{k=1}^{n^{\sigma}} \mathcal{E}_n(k) = 0$).

・ロン ・回 と ・ ヨ と ・ ヨ と

Quantitative noise sensitivity

Quantitative noise sensitivity results corresponds to knowing how fast the spectrum goes to ∞ .

$$E(f(\omega)f(\omega^{\epsilon_n})) = E(f_n)^2 + \sum_{k=1}^{n^2} \mathcal{E}_n(k)(1-2\epsilon_n)^k.$$

Being sensitive to $(1/n)^{\sigma}$ is equivalent to vanishingly small spectrum below n^{σ} (i.e., $\lim_{n\to\infty} \sum_{k=1}^{n^{\sigma}} \mathcal{E}_n(k) = 0$).

Quantitative noise sensitivity

Quantitative noise sensitivity results corresponds to knowing how fast the spectrum goes to ∞ .

$$E(f(\omega)f(\omega^{\epsilon_n})) = E(f_n)^2 + \sum_{k=1}^{n^2} \mathcal{E}_n(k)(1-2\epsilon_n)^k.$$

Being sensitive to $(1/n)^{\sigma}$ is equivalent to vanishingly small spectrum below n^{σ} (i.e., $\lim_{n\to\infty} \sum_{k=1}^{n^{\sigma}} \mathcal{E}_n(k) = 0$).

The spectrum for percolation

We "expect" that most of the spectrum is around $n^{3/4}$ because

- There was a heuristic involving the pivotals suggesting there was noise sensitivity with noise level 1/n^{3/4}.
- ▶ There is a fascinating relationship between the random sets \mathcal{P}_n and \mathcal{S}_n implying $E[|\mathcal{P}_n|] = E[|\mathcal{S}_n|]$.

・ロン ・回 と ・ ヨ と ・ ヨ と

The spectrum for percolation

We "expect" that most of the spectrum is around $n^{3/4}$ because

- ► There was a heuristic involving the pivotals suggesting there was noise sensitivity with noise level 1/n^{3/4}.
- ▶ There is a fascinating relationship between the random sets \mathcal{P}_n and \mathcal{S}_n implying $E[|\mathcal{P}_n|] = E[|\mathcal{S}_n|]$.

・ロン ・回 と ・ ヨ と ・ ヨ と

The spectrum for percolation

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

3

The spectrum for percolation

We know $E(|\mathcal{S}_n|) \sim n^{3/4}$ but we need that $|\mathcal{S}_n|$ is typically $\sim n^{3/4}$

But random variables are not necessarily described well by their means.

イロン イヨン イヨン イヨン

-2

The spectrum for percolation

We know $E(|\mathcal{S}_n|) \sim n^{3/4}$ but we need that $|\mathcal{S}_n|$ is typically $\sim n^{3/4}$

But random variables are not necessarily described well by their means.

イロン 不同と 不同と 不同と

3

The spectrum for percolation

To go all the way to $n^{3/4}$ (Garban, Pete and Schramm), one works with the whole random set S_n .

A simple model where you have a discrete fractal and where one can "fairly easily" show that its typical behavior is described well by its expectation is **Fractal Percolation**.

The dynamical percolation model

Dynamical Percolation was introduced in 1997 by Häggström, Peres and S. (HPS) (independently introduced by I. Benjamini)

Much to be said about this model (see a survey on my homepage) but we stick to critical percolation on the hexagonal lattice. Start at time 0 with an ordinary percolation realization and then let each hexagon evolve independently according to the 2-state continuous time Markov chain with

> $0 \rightarrow 1$ at rate 1, $1 \rightarrow 0$ at rate 1

Since the dynamics are independent, our initial distribution is a stationary distribution for the whole system.

The dynamical percolation model

Dynamical Percolation was introduced in 1997 by Häggström, Peres and S. (HPS) (independently introduced by I. Benjamini)

Much to be said about this model (see a survey on my homepage) but we stick to critical percolation on the hexagonal lattice. Start at time 0 with an ordinary percolation realization and then let each hexagon evolve independently according to the 2-state continuous time Markov chain with

> $0 \rightarrow 1$ at rate 1, $1 \rightarrow 0$ at rate 1

Since the dynamics are independent, our initial distribution is a stationary distribution for the whole system.

The dynamical percolation model

Dynamical Percolation was introduced in 1997 by Häggström, Peres and S. (HPS) (independently introduced by I. Benjamini)

Much to be said about this model (see a survey on my homepage) but we stick to critical percolation on the hexagonal lattice. Start at time 0 with an ordinary percolation realization and then let each hexagon evolve independently according to the 2-state continuous time Markov chain with

> $0 \rightarrow 1$ at rate 1, $1 \rightarrow 0$ at rate 1

Since the dynamics are independent, our initial distribution is a stationary distribution for the whole system.

Dynamical percolation: Results

Basic question: Are there **exceptional** times at which the configuration **looks different** from ordinary percolation? **Theorem. (Schramm-S., 2010):**

(i). For dynamical percolation on the hexagonal lattice, there are **exceptional times** at which percolation occurs.

(ii). The Hausdorff dimension of this fractal set of **exceptional** times belongs to [1/6, 31/36].

The set of exceptional times is our **fourth fractal set**. It is sort of like the zero set of a Brownian motion.

Garban, **Pete and Schramm**, **2010**: The Hausdorff dimension of the set of **exceptional times** is 31/36. On the square lattice, there are also **exceptional times**.

・ロン ・回と ・ヨン ・ヨン

Dynamical percolation: Results

Basic question: Are there **exceptional** times at which the configuration **looks different** from ordinary percolation? **Theorem. (Schramm-S., 2010):**

(i). For dynamical percolation on the hexagonal lattice, there are **exceptional times** at which percolation occurs.

(ii). The Hausdorff dimension of this fractal set of exceptional times belongs to [1/6, 31/36].

The set of exceptional times is our **fourth fractal set**. It is sort of like the zero set of a Brownian motion.

Garban, **Pete and Schramm**, **2010**: The Hausdorff dimension of the set of **exceptional times** is 31/36. On the square lattice, there are also **exceptional times**.

・ロン ・回 と ・ ヨ と ・ ヨ と

Dynamical percolation: Results

Basic question: Are there **exceptional** times at which the configuration **looks different** from ordinary percolation? **Theorem. (Schramm-S., 2010):**

(i). For dynamical percolation on the hexagonal lattice, there are **exceptional times** at which percolation occurs.

(ii). The Hausdorff dimension of this fractal set of **exceptional** times belongs to [1/6, 31/36].

The set of exceptional times is our **fourth fractal set**. It is sort of like the zero set of a Brownian motion.

Garban, **Pete and Schramm**, **2010**: The Hausdorff dimension of the set of **exceptional times** is 31/36. On the square lattice, there are also **exceptional times**.

・ロン ・回と ・ヨン ・ヨン

Dynamical percolation: Results

Basic question: Are there **exceptional** times at which the configuration **looks different** from ordinary percolation? **Theorem. (Schramm-S., 2010):**

(i). For dynamical percolation on the hexagonal lattice, there are **exceptional times** at which percolation occurs.

(ii). The Hausdorff dimension of this fractal set of **exceptional** times belongs to [1/6, 31/36].

The set of exceptional times is our **fourth fractal set**. It is sort of like the zero set of a Brownian motion.

Garban, **Pete and Schramm**, **2010**: The Hausdorff dimension of the set of **exceptional times** is 31/36. On the square lattice, there are also **exceptional times**.

・ロン ・回と ・ヨン ・ヨン

The second moment method: the key variable The key variable is

$$X_n := \int_0^1 \mathbb{1}_{V_{t,n}} \, dt$$

where $V_{t,n}$ is the event that at time t, there is an open path from the origin to distance n away.

So X_n is the (Lebesgue) amount of time that the origin is connected to distant n away.
The second moment method: the key step Key step:

$$\mathsf{E}(X_n^2) \le O(1)\mathsf{E}(X_n)^2$$

If true, Cauchy-Schwartz yields

$$\inf_n P(X_n > 0) > 0.$$

Hence

$$P(X_n > 0 \forall n) > 0$$

giving an exceptional time.

The second moment method: bounding the correlation To show

$$(*)E(X_n^2) \leq O(1)E(X_n)^2,$$

one needs good bounds on

$$P(V_{0,n} \cap V_{t,n}).$$

We are back to noise sensitivity and Fourier analysis.

In other words, the relationship between **exceptional times** and **noise sensitivity** is that the second moment arguments needed to carry out the former reduce (more or less) to the latter.

The second moment method: bounding the correlation To show

$$(*)E(X_n^2) \leq O(1)E(X_n)^2,$$

one needs good bounds on

$$P(V_{0,n} \cap V_{t,n}).$$

We are back to noise sensitivity and Fourier analysis.

In other words, the relationship between **exceptional times** and **noise sensitivity** is that the second moment arguments needed to carry out the former reduce (more or less) to the latter.

Two approaches

Schramm-S. approach using a new connection with randomized algorithms in theoretical computer science yielded

$$(**)P(V_{0,n} \cap V_{t,n}) \leq O(1)t^{-5/6}P(V_{0,n})^2$$

The integrability of $t^{-5/6}$ yields (*) and the "1/6 to spare" gives via a "Frostman expected energy type argument" the lower bound.

By studying the spectrum **geometrically** as a random subset of the hexagons, Garban, Pete and Schramm improved (**) where 5/6 is replaced by 5/36 yielding the dimension to be 31/36.

Two approaches

Schramm-S. approach using a new connection with randomized algorithms in theoretical computer science yielded

$$(**)P(V_{0,n} \cap V_{t,n}) \leq O(1)t^{-5/6}P(V_{0,n})^2$$

The integrability of $t^{-5/6}$ yields (*) and the "1/6 to spare" gives via a "Frostman expected energy type argument" the lower bound.

By studying the spectrum **geometrically** as a random subset of the hexagons, Garban, Pete and Schramm improved (**) where 5/6 is replaced by 5/36 yielding the dimension to be 31/36.

イロン イヨン イヨン イヨン

Further reading

If you want to read about this and more, see

Lectures on Noise Sensitivity and Percolation by Christophe Garban and J.S.

Thank you for your attention!

Further reading

If you want to read about this and more, see

Lectures on Noise Sensitivity and Percolation by Christophe Garban and J.S.

Thank you for your attention!

イロン イヨン イヨン イヨン