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Percolation on the hexagonal lattice
Let each hexagon be black with probability p.

Theorem: (Harris, 1960)

If p ≤ 1/2, then no infinite black component.

Theorem: (Kesten, 1980)

If p > 1/2, then there is an infinite black component.

The critical value is 1/2.
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The 1-arm exponent

R

0

Let AR be the event that there is an open path from the origin to
distance R away.
Theorem. (Lawler, Schramm and Werner, 2002):
For the hexagonal lattice, one has

P(AR) = R−5/48+o(1)

as R →∞.
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The 4-arm exponent

R

0

Let A4
R be the event that there are 4 paths adjacent to the origin

to distance R away alternating in color.
Theorem. (Smirnov and Werner, 2001):
For the hexagonal lattice, one has

P(A4
R) = R−5/4+o(1)

as R →∞.
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Tools for computing critical exponents
The above are two of an infinite number of critical exponents
that one can compute.

These critical exponents were predicted by theoretical physicists.

Conformal invariance (Smirnov) and Schramm-Lowner
Evolution (Schramm) are the tools used to derive these critical
exponents.
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Four fractals
We will look at 4 fractals associated to the above critical
percolation.

1. The set P of pivotal hexagons for percolation crossing events.

2. The spectral sample S for percolation crossing events: Key to
the study of noise sensitivity. Very related to (but different
from!!) the set of pivotal hexagons.

3. Fractal percolation: a simpler model to keep in mind.

4. The set of exceptional times for dynamical percolation.
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The percolation crossing event
Through most of the talk, we are interested in the event that there
is a Left-Right crossing of black hexagons in an n × n box.
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Pivotal hexagons and the pivotal set P
A hexagon is pivotal if changing its status changes whether there
is a L-R crossing: these are the hexagons which are important on a
global scale.

d

x

Definition: The pivotal set P is the (random) subset of pivotal
hexagons; this is our first fractal set.
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Influences
Definition: The influence of a hexagon is the probability that it is
pivotal.

d

x

Note that this our four arm event and so the influence of each
hexagon is about ∼ n−5/4. Hence E (|P|) ∼ n3/4.

So, P should have dimension 3/4.
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Noise sensitivity for percolation
Noise sensitivity was introduced by Benjamini, Kalai and
Schramm.

ω

ǫ-noised

ω
ǫ

?
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Noise sensitivity for percolation: the question

Perform critical percolation on an n × n box in the hexagonal
lattice.

Let En be the event that there is a L-R crossing of black
hexagons.

Fix ε > 0 and flip/reverse the status of each hexagon with
probability ε.

Let E ε
n be the event that there is a L-R crossing of black hexagons

after the flipping procedure. (Of course P(E ε
n) = P(En)).

Question: Are En and E ε
n highly correlated or very independent?

(Of course, if n is fixed and ε is small, they are highly correlated;

so we should think ε is small and fixed and n →∞.)
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Noise sensitivity for percolation: some answers
Theorem. (Benjamini, Kalai and Schramm, 1999):
For all ε > 0,

lim
n→∞

P(En ∩ E ε
n)− P(En)

2 = 0.

More quantitative versions

Theorem. (Schramm and S., 2010):
If εn = (1/n)γ with γ < 1/8, then

lim
n→∞

P(En ∩ E εn
n )− P(En)

2 = 0.

Theorem. (Garban, Pete and Schramm, 2010):
If εn = (1/n)γ with γ < 3/4, then

lim
n→∞

P(En ∩ E εn
n )− P(En)

2 = 0.

For γ > 3/4, there is full correlation.
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Noise sensitivity for percolation: some remarks

I A crucial ingredient in all three proofs is Fourier analysis.

I Benjamini, Kalai and Schramm: exploit hypercontractivity.

I Schramm and S.: develop results in randomized algorithms.

I Garban, Pete and Schramm: view the spectral measure as a
random fractal.
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The 3/4 exponent in a nutshell

I Recall that the probability that a hexagon is pivotal is ∼ n−5/4

and hence the expected number of pivotal hexagons is ∼ n3/4.

I Therefore εn = (1/n)3/4 should be the crossover point when
we are likely to reverse a pivotal hexagon which “should”
completely mix things up.

But the true story is much more complicated!
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The Fourier set-up
The set of all functions f : {−1, 1}n → R is a 2n dimensional
vector space with orthogonal basis {χS}S⊆{1,...,n} where

χS(x1, . . . , xn) :=
∏
i∈S

xi .

We then can write

f =
∑

S⊆{1,...,n}

f̂(S)χS with f̂(S) = E (f χS).

If f maps to {±1}, then E (f 2) = 1 and∑
S

f̂ 2(S) = 1.
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The Fourier set-up for percolation
Consider percolation on an n × n box and let fn be 1 if there is a
L-R black crossing and -1 otherwise.
fn is a function of the states of the hexagons; i.e., (if we identify
“black” with 1 and “white” with -1)

fn : {−1, 1}Hn → {±1}

where Hn is the set of hexagons in the n × n box.

fn =
∑

S⊆Hn

f̂n(S)χS with f̂n(S) = E (fnχS).

Jeff Steif Critical Percolation and Fractals



Percolation:The basic set-up
Percolation: Critical Exponents

Fractals
Crossing events, the pivotal set and influences

Noise sensitivity
Fourier analysis and the spectral sample

Dynamical Percolation
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The Fourier picture and noise sensitivity
The key connection between the Fourier coefficients and noise
sensitivity is the following elementary fact.

E (fn(ω)fn(ω
ε)) =

∑
S⊆Hn

f̂n(S)2(1− 2ε)|S |

= E[(1− 2ε)|Sn|].∗

Definition: The energy spectrum, En, is defined by

En(k) :=
∑
|S |=k

f̂n(S)2, k = 1, . . . , n2.

∗ = E (fn)
2 +

n2∑
k=1

En(k)(1− 2ε)k .
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Picture of the spectrum
The spectrum of a general function looks like this.

Ef(m) =
∑

|S|=m f̂(S)2

m. . . . . .

m = 1m = 2 m = n
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The Fourier picture and noise sensitivity: continued

E (fn(ω)fn(ω
ε)) =

∑
S⊆Hn

f̂n(S)2(1− 2ε)|S |

= E [(1− 2ε)|Sn|] = E (fn)
2 +

n2∑
k=1

En(k)(1− 2ε)k .

Conclusion: Noise sensitivity corresponds to Ef being
concentrated on large k.

Proposition (BKS, 1999): {fn} is noise sensitive if and only if for
every k ≥ 1,

lim
n→∞

∑
|S |=k

f̂n(S)2 = lim
n→∞

Efn(k) = lim
n→∞

P(|Sfn | = k) = 0.
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Quantitative noise sensitivity
Quantitative noise sensitivity results corresponds to knowing how
fast the spectrum goes to ∞.

E (f (ω)f (ωεn)) = E (fn)
2 +

n2∑
k=1

En(k)(1− 2εn)
k .

Being sensitive to (1/n)σ is equivalent to vanishingly small
spectrum below nσ (i.e., limn→∞

∑nσ

k=1 En(k) = 0).
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The spectrum for percolation
We “expect” that most of the spectrum is around n3/4 because

I There was a heuristic involving the pivotals suggesting there
was noise sensitivity with noise level 1/n3/4.

I There is a fascinating relationship between the random sets
Pn and Sn implying E [|Pn|] = E [|Sn|].
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The spectrum for percolation

k. . .

≈ n3/4

� log n

≈ n1/8

∑
|S|=k f̂n(S)2
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The spectrum for percolation
We know E (|Sn|) ∼ n3/4 but we need that |Sn| is typically ∼ n3/4

But random variables are not necessarily described well by
their means.
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The spectrum for percolation
To go all the way to n3/4 (Garban, Pete and Schramm), one works
with the whole random set Sn.
A simple model where you have a discrete fractal and where one
can “fairly easily” show that its typical behavior is described well
by its expectation is Fractal Percolation.
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The dynamical percolation model
Dynamical Percolation was introduced in 1997 by Häggström,
Peres and S. (HPS) (independently introduced by I. Benjamini)

Much to be said about this model (see a survey on my homepage)
but we stick to critical percolation on the hexagonal lattice.
Start at time 0 with an ordinary percolation realization and then
let each hexagon evolve independently according to the 2-state
continuous time Markov chain with

0 → 1 at rate 1,

1 → 0 at rate 1

Since the dynamics are independent, our initial distribution is a
stationary distribution for the whole system.

Jeff Steif Critical Percolation and Fractals



Percolation:The basic set-up
Percolation: Critical Exponents

Fractals
Crossing events, the pivotal set and influences

Noise sensitivity
Fourier analysis and the spectral sample

Dynamical Percolation

The dynamical percolation model
Dynamical Percolation was introduced in 1997 by Häggström,
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Dynamical percolation: Results
Basic question: Are there exceptional times at which the
configuration looks different from ordinary percolation?
Theorem. (Schramm-S., 2010):
(i). For dynamical percolation on the hexagonal lattice, there are
exceptional times at which percolation occurs.

(ii). The Hausdorff dimension of this fractal set of exceptional
times belongs to [1/6, 31/36].

The set of exceptional times is our fourth fractal set. It is sort of
like the zero set of a Brownian motion.

Garban, Pete and Schramm, 2010: The Hausdorff dimension of
the set of exceptional times is 31/36. On the square lattice,
there are also exceptional times.
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The second moment method: the key variable
The key variable is

Xn :=

∫ 1

0
1Vt,n dt

where Vt,n is the event that at time t, there is an open path from
the origin to distance n away.
So Xn is the (Lebesgue) amount of time that the origin is
connected to distant n away.
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The second moment method: the key step
Key step:

E (X 2
n ) ≤ O(1)E (Xn)

2

If true, Cauchy-Schwartz yields

inf
n

P(Xn > 0) > 0.

Hence
P(Xn > 0 ∀n) > 0

giving an exceptional time.
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The second moment method: bounding the correlation
To show

(∗)E (X 2
n ) ≤ O(1)E (Xn)

2,

one needs good bounds on

P(V0,n ∩ Vt,n).

We are back to noise sensitivity and Fourier analysis.

In other words, the relationship between exceptional times and
noise sensitivity is that the second moment arguments needed to
carry out the former reduce (more or less) to the latter.
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Two approaches
Schramm-S. approach using a new connection with randomized
algorithms in theoretical computer science yielded

(∗∗)P(V0,n ∩ Vt,n) ≤ O(1)t−5/6P(V0,n)
2

The integrability of t−5/6 yields (*) and the “1/6 to spare” gives
via a “Frostman expected energy type argument” the lower bound.

By studying the spectrum geometrically as a random subset of
the hexagons, Garban, Pete and Schramm improved (**) where
5/6 is replaced by 5/36 yielding the dimension to be 31/36.
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Further reading

If you want to read about this and more, see

Lectures on Noise Sensitivity and Percolation
by Christophe Garban and J.S.

Thank you for your attention!
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